日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,點A在x軸上,OA=4,將線段OA繞點O逆時針旋轉(zhuǎn)120°至OB的位置.
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過點A、O、B的拋物線的解析式;
          (3)在此拋物線的對稱軸上,是否存在點P,使得以點P、O、B為頂點的三角形是等腰三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

          解:(1)如圖,過點B作BC⊥x軸,垂足為C,則∠BCO=90°,
          ∵∠AOB=120°,
          ∴∠BOC=60°,
          又∵OA=OB=4,
          ∴OC=OB=×4=2,BC=OB•sin60°=4×=2
          ∴點B的坐標(biāo)是(-2,2).

          (2)∵拋物線過原點O和點A、B,
          ∴可設(shè)拋物線解析式為y=ax2+bx,
          將A(4,0),B(-2,2)代入,得,
          解得:
          ∴此拋物線的解析式為y=

          (3)存在.
          如圖,拋物線的對稱軸是x=2,直線x=2與x軸的交點為D,
          設(shè)點P的坐標(biāo)為(2,y),
          ①若OB=OP,
          則22+|y|2=42,解得y=±2
          當(dāng)y=-2時,在Rt△POD中,∠POD=90°,
          sin∠POD=
          ∴∠POD=60°.
          ∴∠POB=∠POD+∠AOB=60°+120°=180°,
          即P,O,B三點在同一條直線上,
          ∴y=-2不符合題意,舍去,
          ∴點P的坐標(biāo)為(2,2).
          ②若OB=PB,則42+|y-2|2=42,解得y=2
          ∴點P的坐標(biāo)是(2,2).
          ③若OP=PB,則22+|y|2=42+|y-2|2,解得y=2
          ∴點P的坐標(biāo)是(2,2).
          綜上所述,符合條件的點P只有一個,其坐標(biāo)為(2,2).
          分析:(1)過點B作BC⊥x軸,垂足為C,在Rt△BOC中解直角三角形可得出點B的坐標(biāo);
          (2)設(shè)出拋物線解析式,利用待定系數(shù)法求出拋物線解析式即可.
          (3)設(shè)點P的坐標(biāo)為(2,y),分三種情況討論,①OB=OP,②OB=PB,③OP=PB,分別求出y的值,即可得出點P的坐標(biāo).
          點評:本題考查了二次函數(shù)的綜合,涉及了待定系數(shù)法求二次函數(shù)解析式、解直角三角形及等腰三角形的性質(zhì),難點在第三問,關(guān)鍵是分類討論,避免漏解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖,點M在x軸上,以點M為圓心,2.5長為半徑的圓交y軸于A、B兩點,交x軸于C(精英家教網(wǎng)x1,0)、D(x2,0)兩點,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的兩根.
          (1)求點C、D及點M的坐標(biāo);
          (2)若直線y=kx+b切⊙M于點A,交x軸于P,求PA的長;
          (3)⊙M上是否存在這樣的點Q,使點Q、A、C三點構(gòu)成的三角形與△AOC相似?若存在,請求出點的坐標(biāo),并求出過A、C、Q三點的拋物線的解析式;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C的直線y=2x+b交x軸于D,且⊙P的半徑為
          5
          ,AB=4.若函數(shù)y=
          k
          x
          (x<0)的圖象過C點,則k的值是( 。
          A、±4
          B、-4
          C、-2
          5
          D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于C,過點C精英家教網(wǎng)的直線y=2x+b交x軸于D,且⊙P的半徑為
          5
          ,AB=4.
          (1)求點B,P,C的坐標(biāo);
          (2)求證:CD是⊙P的切線;
          (3)若二次函數(shù)y=-x2+(a+1)x+6的圖象經(jīng)過點B,求這個二次函數(shù)的解析式,并寫出使二次函數(shù)值小于一次函數(shù)y=2x+b值的x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,精英家教網(wǎng)-1)
          (1)求經(jīng)過B、E、C三點的二次函數(shù)的解析式;
          (2)若經(jīng)過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設(shè)Q點的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
          (3)在(2)的條件下,當(dāng)y=0時,求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點的橫坐標(biāo)x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點I在x軸上,以I為圓心、r為半徑的半圓I與x軸相交于點A、B,與y軸相精英家教網(wǎng)交于點D,順次連接I、D、B三點可以組成等邊三角形.過A、B兩點的拋物線y=ax2+bx+c的頂點P也在半圓I上.
          (1)證明:無論半徑r取何值時,點P都在某一個正比例函數(shù)的圖象上.
          (2)已知兩點M(0,-1)、N(1、0),且射線MN與拋物線y=ax2+bx+c有兩個不同的交點,請確定r的取值范圍.
          (3)請簡要描述符合本題所有條件的拋物線的特征.

          查看答案和解析>>

          同步練習(xí)冊答案