日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】五邊形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且滿足以點B為圓心,AB長為半徑的圓弧AC與邊DE相切于點F,連接BE,BD.

          (1)如圖1,求∠EBD的度數(shù);
          (2)如圖2,連接AC,分別與BE,BD相交于點G,H,若AB=1,∠DBC=15°,求AGHC的值.

          【答案】
          (1)

          【解答】解:如圖1,

          連接BF,

          ∵DE與⊙B相切于點F,

          ∴BF⊥DE,

          在Rt△BAE與Rt△BEF中,

          ∴Rt△BAE≌Rt△BEF,

          ∴∠1=∠2,

          同理∠3=∠4,

          ∵∠ABC=90°,

          ∴∠2+∠3=45°,

          即∠EBD=45°;


          (2)

          【解答】

          如圖2,

          連接BF并延長交CD的延長線于P,

          ∵∠4=15°,

          由(1)知,∠3=∠4=15°,

          ∴∠1=∠2=30°,∠PBC=30°,

          ∵∠EAB=∠PCB=90°,AB=1,

          ∴AE=,BE=,

          在△ABE與△PBC中,,

          ∴△ABE≌△PBC,

          ∴PB=BE=,

          ∴PF=-1,

          ∵∠P=60°,

          ∴DF=2﹣

          ∴CD=DF=2﹣,

          ∵∠EAG=∠DCH=45°,

          ∠AGE=∠BDC=75°,

          ∴△AEG∽△CHD,

          ,

          ∴AGCH=CDAE,

          ∴AGCH=CDAE=(2﹣=


          【解析】(1)如圖1,連接BF,由DE與⊙B相切于點F,得到BF⊥DE,通過Rt△BAE≌Rt△BEF,得到∠1=∠2,同理∠3=∠4,于是結論可得;
          (2)如圖2,連接BF并延長交CD的延長線于P,由△ABE≌△PBC,得到PB=BE=,求出PF=-1,通過△AEG∽△CHD,列比例式即可得到結果.
          【考點精析】通過靈活運用切線的性質定理和相似三角形的判定與性質,掌握切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】
          (1)計算:﹣(﹣2)+(1+π)0﹣||+
          (2)先化簡,再求值:(x+2)(x﹣2)﹣x(x+3),其中x=﹣3.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為x=﹣1.

          (1)求拋物線的解析式并寫出其頂點坐標;
          (2)若動點P在第二象限內(nèi)的拋物線上,動點N在對稱軸l上.
          ①當PA⊥NA,且PA=NA時,求此時點P的坐標;
          ②當四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:|﹣3|+2cos30°+(0﹣(﹣1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校體育社團在校內(nèi)開展“最喜歡的體育項目(四項選一項)”調(diào)查,對九年級學生隨機抽樣,并將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計圖,請結合統(tǒng)計

          圖解答下列問題:
          (1)求本次抽樣人數(shù)有多少人?
          (2)補全條形統(tǒng)計圖;
          (3)該校九年級共有600名學生,估計九年級最喜歡跳繩項目的學生有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】11月讀書節(jié),深圳市為統(tǒng)計某學校初三學生讀書狀況,如下圖:

          (1)求三本以上的x值、參加調(diào)查的總人數(shù),并補全統(tǒng)計圖;
          (2)三本以上的圓心角為 °
          (3)全市有6.7萬學生,三本以上有 人.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】2015廣州)如圖,AC是⊙O的直徑,點B在⊙O上,∠ACB=30°

          (1)利用尺規(guī)作∠ABC的平分線BD,交AC于點E,交⊙O于點D,連接CD(保留作圖痕跡,不寫作法)
          (2)在(1)所作的圖形中,求△ABE與△CDE的面積之比.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】2015年4月25日14時11分,尼泊爾發(fā)生8.1級地震,震源深度20千米.中國救援隊火速趕往災區(qū)救援,探測出某建筑物廢墟下方點C處有生命跡象.在廢墟一側某面上選兩探測點A、B,AB相距2米,探測線與該面的夾角分別是30°和45°(如圖).試確定生命所在點C與探測面的距離.(參考數(shù)據(jù)≈1.41,≈1.73)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在盒子里放有三張分別寫有整式a+1,a+2,2的卡片,從中隨機抽取兩張卡片,把兩張卡片上的整式分別作為分子和分母,則能組成分式的概率是(  )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習冊答案