日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線y=x+b(b≠0)交坐標(biāo)軸于A、B兩點(diǎn),點(diǎn)D在直線上,D的橫縱坐標(biāo)之積為2,過D作兩坐標(biāo)軸的垂線DC、DE,連接OD.
          (1)求證:AD平分∠CDE;
          (2)對(duì)任意的實(shí)數(shù)b(b≠0),求證:AD•BD為定值;
          (3)是否存在直線AB,使得四邊形OBCD為平行四邊形?若存在,求出直線的解析式;若不存在,請(qǐng)說明理由.

          (1)證明見解析;(2)證明見解析;(3)存在,y=x-1.

          解析試題分析:(1)由于DE⊥y軸,DC⊥x軸,不難得出∠EDC=90°,因此要證AD平分∠CDE,需證得∠ADC或∠ADE為45°,根據(jù)直線AB的解析式可得出A(-b,0),B(0,b),因此OA=OB,即三角形OAB是等腰直角三角形,即可證得∠ADC=∠ABO=45°,由此可得證;
          (2)在(1)中已經(jīng)證得三角形ADC是等腰三角形,同理可得出三角形BDE也是等腰三角形,因此AD= CD,BD=DE,那么AD•BD=2CD•DE,而CD和DE的長(zhǎng),正好是反比例函數(shù)圖象上D點(diǎn)的橫坐標(biāo)與縱坐標(biāo),由此可得出AD•BD是個(gè)定值;
          (3)如果四邊形OBCD是平行四邊形,需要滿足的條件是OB=CD,OA=AC,可根據(jù)這個(gè)條件設(shè)B、D的坐標(biāo),然后將D點(diǎn)坐標(biāo)代入反比例函數(shù)的解析式中,即可求出D點(diǎn)坐標(biāo),也就得出了B點(diǎn)的坐標(biāo),然后用待定系數(shù)法即可求得直線的解析式.
          試題解析:(1)證明:由y=x+b得A(-b,0),B(0,b).
          ∴∠DAC=∠OAB=45°
          又∵DC⊥x軸,DE⊥y軸
          ∴∠ACD=∠CDE=90°
          ∴∠ADC=45°
          即AD平分∠CDE.
          (2)證明:∵∠ACD=90°,∠ADC=45°,
          ∴△ACD是等腰直角三角形,
          同理可得,△BDE是等腰直角三角形,
          ∴AD=CD,BD=DE.
          ∴AD•BD=2CD•DE=2×2=4為定值.
          (3)解:存在直線AB,使得OBCD為平行四邊形.
          若OBCD為平行四邊形,則AO=AC,OB=CD.
          由(1)知AO=BO,AC=CD,
          設(shè)OB=a(a>0),
          ∴B(0,-a),D(2a,a),
          ∵D的橫縱坐標(biāo)之積為2,
          ∴點(diǎn)D在雙曲線y=上,
          ∴2a•a=2,
          ∴a1=-1(舍去),a2=1,
          ∴B(0,-1).
          又∵B在y=x+b上,
          ∴b=-1.
          即存在直線:y=x-1,使得四邊形OBCD為平行四邊形.
          考點(diǎn):1.一次函數(shù)綜合題;2.等腰直角三角形;3.平行四邊形的判定與性質(zhì).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          一次函數(shù)y=﹣x+1與x軸,y軸所圍成的三角形的面積是  

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn).  
          (1)求,兩點(diǎn)的坐標(biāo);
          (2)過點(diǎn)作直線P與x軸交于點(diǎn),且使△AP的面積為2,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          蠟燭燃燒時(shí)余下的長(zhǎng)度y(cm) 和燃燒的時(shí)間x(分鐘)的關(guān)系如圖所示。
          (1)求燃燒50分鐘后蠟燭的長(zhǎng)度;
          (2)這支蠟燭最多能燃燒多長(zhǎng)時(shí)間。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          某市對(duì)火車站進(jìn)行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動(dòng)打印車票的無人售票窗口.如圖,線段分別表示某日從上午8點(diǎn)到上午11點(diǎn),每個(gè)普通售票窗口售出的車票數(shù)(張)和每個(gè)無人售票窗口售出的車票數(shù)(張)關(guān)于售票時(shí)間(小時(shí))的函數(shù)圖象.
          (1)求(張)與(小時(shí))的函數(shù)解析式;
          (2)若當(dāng)天開放無人售票窗口個(gè)數(shù)是普通售票窗口個(gè)數(shù)的2倍,從上午8點(diǎn)到上午11點(diǎn),兩種窗口共售出的車票數(shù)為2400張,求當(dāng)天開放無人售票窗口的個(gè)數(shù)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A,B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.在x軸上有一點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和y=x的圖象于點(diǎn)C,D.
          (1)求點(diǎn)A的坐標(biāo);
          (2)若OB=CD,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3).反比例函數(shù)y=(x>0)的函數(shù)圖象經(jīng)過點(diǎn)D,點(diǎn)P是一次函數(shù)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn).
          (1)求反比例函數(shù)的解析式;
          (2)通過計(jì)算,說明一次函數(shù)的圖象一定過點(diǎn)C;
          (3)對(duì)于一次函數(shù),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍(不必寫出過程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          甲、乙兩個(gè)商場(chǎng)出售相同的某種商品,每件售價(jià)均為3000元,并且多買都有一定的優(yōu)惠.甲商場(chǎng)的優(yōu)惠條件是:第一件按原售價(jià)收費(fèi),其余每件優(yōu)惠30%;乙商場(chǎng)的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時(shí),甲商場(chǎng)收費(fèi)為y1元,乙商場(chǎng)收費(fèi)為y2元.
          (1)分別求出y1,y2與x之間的關(guān)系式;
          (2)當(dāng)甲、乙兩個(gè)商場(chǎng)的收費(fèi)相同時(shí),所買商品為多少件?
          (3)當(dāng)所買商品為5件時(shí),應(yīng)選擇哪個(gè)商場(chǎng)更優(yōu)惠?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門提出了一個(gè)購(gòu)買商品房的政策性方案.

          人均住房面積(平方米)
          單價(jià)(萬元/平方米)
          不超過30(平方米)
          0.3
          超過30平方米不超過m(平方米)部分(45≤m≤60)
          0.5
          超過m平方米部分
          0.7
           
          根據(jù)這個(gè)購(gòu)房方案:
          (1)若某三口之家欲購(gòu)買120平方米的商品房,求其應(yīng)繳納的房款;
          (2)設(shè)該家庭購(gòu)買商品房的人均面積為x平方米,繳納房款y萬元,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式;
          (3)若該家庭購(gòu)買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時(shí),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案