日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.

          (1)判斷下列命題是真命題,還是假命題?

          ①正方形是自相似菱形;

          ②有一個內(nèi)角為60°的菱形是自相似菱形.

          ③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°α90°),EBC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED

          (2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,EBC中點.

          ①求AEDE的長;

          ACBD交于點O,求tanDBC的值.

          【答案】(1)見解析;(2)AE=2,DE=4;②tanDBC=

          【解析】

          1)①證明ABE≌△DCESAS),得出ABE∽△DCE即可;

          ②連接AC,由自相似菱形的定義即可得出結論;

          ③由自相似菱形的性質即可得出結論;

          2)①由(1)③得ABE∽△DEA,得出,求出AE2DE4即可;

          ②過EEMADM,過DDNBCN,則四邊形DMEN是矩形,得出DNEMDMEN,∠M=∠N90°,設AMx,則ENDMx+4,由勾股定理得出方程,解方程求出AM1,ENDM5,由勾股定理得出DNEM,求出BN7,再由三角函數(shù)定義即可得出答案.

          解:(1)①正方形是自相似菱形,是真命題;理由如下:

          如圖3所示:

          ∵四邊形ABCD是正方形,點EBC的中點,

          AB=CD,BE=CE,∠ABE=DCE=90°,

          ABEDCE

          ,

          ∴△ABE≌△DCE(SAS),

          ∴△ABE∽△DCE

          ∴正方形是自相似菱形,

          故答案為:真命題;

          ②有一個內(nèi)角為60°的菱形是自相似菱形,是假命題;理由如下:

          如圖4所示:

          連接AC,

          ∵四邊形ABCD是菱形,

          AB=BC=CD,ADBC,ABCD,

          ∵∠B=60°,

          ∴△ABC是等邊三角形,∠DCE=120°

          ∵點EBC的中點,

          AEBC

          ∴∠AEB=DAE=90°,

          ∴只能△AEB與△DAE相似,

          ABCD

          ∴只能∠B=AED,

          若∠AED=B=60°,則∠CED=180°90°60°=30°,

          ∴∠CDE=180°120°30°=30°

          ∴∠CED=CDE,

          CD=CE,不成立,

          ∴有一個內(nèi)角為60°的菱形不是自相似菱形,

          故答案為:假命題;

          ③若菱形ABCD是自相似菱形,∠ABC=α(0°α90°)EBC中點,

          則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,是真命題;理由如下:

          ∵∠ABC=α(0°α90°),

          ∴∠C90°,且∠ABC+C=180°,△ABE與△EDC不能相似,

          同理△AED與△EDC也不能相似,

          ∵四邊形ABCD是菱形,

          ADBC,

          ∴∠AEB=DAE,

          當∠AED=B時,△ABE∽△DEA

          ∴若菱形ABCD是自相似菱形,∠ABC=α(0°α90°)EBC中點,

          則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED

          故答案為:真命題;

          (2)①∵菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,EBC中點,

          BE=2AB=AD=4,

          (1)③得:△ABE∽△DEA,

          AE2=BEAD=2×4=8,

          AE=2,DE===4

          故答案為:AE=2;DE=4;

          ②過EEMADM,過DDNBCN,如圖2所示:則四邊形DMEN是矩形,

          DN=EM,DM=EN,∠M=N=90°,

          AM=x,則EN=DM=x+4,

          由勾股定理得:EM2=DE2DM2=AE2AM2,

          (4)2(x+4)2=(2)2x2,

          解得:x=1,

          AM=1,EN=DM=5

          DN=EM==,

          RtBDN中,

          BN=BE+EN=2+5=7,

          tanDBC=,

          故答案為:

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】一張三角形紙片,其三邊之比為.小方將紙片對折,第一次使頂點重合,第二次使頂點重合,第三次使頂點重合,三條折痕依次記為,,,則的值為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,BC依次表示這三首歌曲).比賽時,將AB,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.

          1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;

          2)試用畫樹狀圖或列表的方法表示所有可能的結果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

          售價x(元/千克)

          50

          60

          70

          銷售量y(千克)

          100

          80

          60

          1)求yx之間的函數(shù)表達式;

          2)設商品每天的總利潤為W(元),求Wx之間的函數(shù)表達式(利潤=收入﹣成本);并求出售價為多少元時獲得最大利潤,最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,要在長方形鋼板ABCD的邊AB上找一點E,使∠AEC150°,應怎樣確定點E的位置?為什么?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】問題提出

          1)如圖①,在中,,求的面積.

          問題探究

          2)如圖②,半圓的直徑是半圓的中點,點上,且,點上的動點,試求的最小值.

          問題解決

          3)如圖③,扇形的半徑為選點,在邊上選點,在邊上選點,求的長度的最小值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】2018央視中秋晚會在曲阜尼山舉行,讓全國乃至全世界的目光再一次聚焦曲阜.其中世界最大最高的孔子像,位于晚會場地對面尼山圣境儒宮西側小山上.來觀看晚會的小明想測量一下遠處孔子像的高度.如圖,小明在B處測得孔子像的頂端A的仰角為,然后沿著正對孔子像的方向前進了160m到達E處,再次測得孔子像的頂端A的仰角.已知塑像的底座,小山的高度,那么孔子像的高度是多少?(參考數(shù)據(jù):,,,).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.

          (1)求線段AD的長度;

          (2)點E是線段AC上的一點,試問:當點E在什么位置時,直線ED與⊙O相切?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】李師傅駕車從甲地到乙地,途中在加油站加了一次油,加油時,車載電腦顯示油箱中剩余油量4升,已知汽車行駛時,每小時耗油量一定,設油箱中剩余油量為(升),汽車行駛時間為(時),之間的函數(shù)圖像如圖所示.

          1)求李師傅加油前之間的函數(shù)關系式;

          2)求的值;

          3)李師傅在加油站的加油量.

          查看答案和解析>>

          同步練習冊答案