【題目】在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn)
,點(diǎn)
.若正方形
繞點(diǎn)
順時針旋轉(zhuǎn),得正方形
,記旋轉(zhuǎn)角為
.
(Ⅰ)如圖①,當(dāng)時,求
與
的交點(diǎn)
的坐標(biāo);
(Ⅱ)如圖②,當(dāng)時,求點(diǎn)
的坐標(biāo);
(Ⅲ)若為線段
的中點(diǎn),求
長的取值范圍(直接寫出結(jié)果即可)。
【答案】(Ⅰ)的坐標(biāo)為
;(Ⅱ)點(diǎn)
的坐標(biāo)為
;(Ⅲ)
.
【解析】
(Ⅰ)當(dāng)α=45°時,則,點(diǎn)
在y軸上,根據(jù)勾股定理可得
的長,再根據(jù)Rt△
為等腰直角三角形,可得
,從而得出點(diǎn)D的坐標(biāo);
(Ⅱ)過作
軸,垂足為
,
與
軸交于點(diǎn)
. 當(dāng)
時,可證得
,再利用直角三角形中
所對的直角邊是斜邊的一半和勾股定理,求出OD和
,同理可求出
的長,從而得出點(diǎn)B′的坐標(biāo);
(Ⅲ)連接OB,AC相交于點(diǎn)K,則K是OB的中點(diǎn),因為P為線段BC′的中點(diǎn),所以PK=OC′=3,即點(diǎn)P在以K為圓心,3為半徑的圓上運(yùn)動,即可得出AP長的取值范圍.
解:(Ⅰ)∵點(diǎn),點(diǎn)
,
為正方形,
∴,
.
∵正方形是正方形
旋轉(zhuǎn)得到的,
∴,
.
∴,
.
∴.
∴點(diǎn)的坐標(biāo)為
.
(Ⅱ)過作
軸,垂足為
,
與
軸交于點(diǎn)
.
∵,
∴.
∵,
=6
∴,
,
.
∴.
∵,
, ∴
.
∴,
.
∴.
∴點(diǎn)的坐標(biāo)為
.
(Ⅲ).
如圖③,連接OB,AC相交于點(diǎn)K,
則K是OB、AC的中點(diǎn),
∵P為線段BC′的中點(diǎn),
∴PK=OC′=3,AK=
∴P在以K為圓心,3為半徑的圓上運(yùn)動,
∴AP最大值為AK+KP=,AP的最小值為AK-KP=
,
∴AP長的取值范圍為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE為37°,此時教學(xué)樓頂端G恰好在視線DH上,再向前走8米到達(dá)B處,又測得教學(xué)樓頂端G的仰角∠GEF為45°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.
(1)求古樹BH的高;
(2)計算教學(xué)樓CG的高度.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙施工隊分別從兩端修一段長度為380米的公路.在施工過程中,乙隊曾因技術(shù)改進(jìn)而停工一天,之后加快了施工進(jìn)度并與甲隊共同按期完成了修路任務(wù).下表是根據(jù)每天工程進(jìn)度繪制而成的.
施工時間/天 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
累計完成施工量/米 | 35 | 70 | 105 | 140 | 160 | 215 | 270 | 325 | 380 |
下列說法錯誤的是( )
A. 甲隊每天修路20米
B. 乙隊第一天修路15米
C. 乙隊技術(shù)改進(jìn)后每天修路35米
D. 前七天甲,乙兩隊修路長度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)N,過A點(diǎn)的直線l:
與y軸交于點(diǎn)C,與拋物線
的另一個交點(diǎn)為D,已知
,P點(diǎn)為拋物線
上一動點(diǎn)(不與A、D重合).
(1)求拋物線和直線l的解析式;
(2)當(dāng)點(diǎn)P在直線l上方的拋物線上時,過P點(diǎn)作PE∥x軸交直線l于點(diǎn)E,作軸交直線l于點(diǎn)F,求
的最大值;
(3)設(shè)M為直線l上的點(diǎn),探究是否存在點(diǎn)M,使得以點(diǎn)N、C,M、P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形AOBC是正方形,點(diǎn)C的坐標(biāo)是(4,0).
(Ⅰ)正方形AOBC的邊長為 ,點(diǎn)A的坐標(biāo)是 .
(Ⅱ)將正方形AOBC繞點(diǎn)O順時針旋轉(zhuǎn)45°,點(diǎn)A,B,C旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A′,B′,C′,求點(diǎn)A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;
(Ⅲ)動點(diǎn)P從點(diǎn)O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運(yùn)動,同時,另一動點(diǎn)Q從點(diǎn)O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運(yùn)動,運(yùn)動時間為t秒,當(dāng)它們相遇時同時停止運(yùn)動,當(dāng)△OPQ為等腰三角形時,求出t的值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月15日,亞洲文明對話大會在北京開幕.為了增進(jìn)學(xué)生對亞洲文化的了解,某學(xué)校開展了相關(guān)知識的宣傳教育活動。為了解這次宣傳活動的效果,學(xué)校從全校1200名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行知識測試(測試滿分100分,得分均為整數(shù)),并根據(jù)這100人的測試成績,制作了如下統(tǒng)計圖表。
100名學(xué)生知識測試成績的頻數(shù)表
成績 | 頻數(shù)(人) |
10 | |
15 | |
40 | |
15 |
由圖表中給出的信息回答下列問題:
(1)________,并補(bǔ)全額數(shù)直方圖________;
(2)小明在這次測試中成績?yōu)?/span>85分,你認(rèn)為85分一定是這100名學(xué)生知識測試成績的中位數(shù)嗎?請簡要說明理由;
(3)如果80分以上(包括80分)為優(yōu)秀,請估計全校1200名學(xué)生中成績優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市自開展“學(xué)習(xí)新思想,做好接班人”主題閱讀活動以來,受到各校的廣泛關(guān)注和同學(xué)們的積極響應(yīng),某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.
某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計表
文章閱讀的篇數(shù)(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人數(shù)(人) | 20 | 28 | m | 16 | 12 |
請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有800名學(xué)生,根據(jù)抽查結(jié)果估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為半圓的中點(diǎn),AB是直徑,點(diǎn)D是半圓上一點(diǎn),AC,BD交于點(diǎn)E.若AD=1,BD=7,則CE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)抽取了40名學(xué)生參加“平均每周課外閱讀時間”的調(diào)查,由調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
組別 | 時間/小時 | 頻數(shù)/人數(shù) |
A組 | 2 | |
B組 | m | |
C組 | 10 | |
D組 | 12 | |
E組 | 7 | |
F組 | 4 |
頻數(shù)分布表
請根據(jù)圖表中的信息解答下列問題:
(1)求頻數(shù)分布表中m的值;
(2)求B組,C組在扇形統(tǒng)計圖中分別對應(yīng)扇形的圓心角度數(shù),并補(bǔ)全扇形統(tǒng)計圖;
(3)已知F組的學(xué)生中,只有1名男生,其余都是女生,用列舉法求以下事件的概率:從F組中隨機(jī)選取2名學(xué)生,恰好都是女生。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com