日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,二次函數(shù)y=x2+bx﹣的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

          (1)b的值及點D的坐標。
          (2)線段AO上是否存在點P(點P不與A、O重合),使得OE的長為1;
          (3)在x軸負半軸上是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

          【答案】解:(1)∵點A(﹣3,0)在二次函數(shù)y=x2+bx﹣的圖象上,
          ∴0=﹣3b﹣,解得b=1,
          ∴二次函數(shù)解析式為y=x2+x﹣=(x+3)(x﹣1),
          ∴點B(1,0),AB=1﹣(﹣3)=4,
          ∵四邊形ABCD為正方形,
          ∴AD=AB=4,
          ∴點D(﹣3,4),
          故答案為:1;(﹣3,4).
          (2)直線PE交y軸于點E,如圖1,

          假設存在點P,使得OE的長為1,設OP=a,則AP=3﹣a,
          ∵DP⊥AE,∠APD+∠DPE+∠EPO=180°,
          ∴∠EPO=90°﹣∠APD=∠ADP,
          tan∠ADP==,tan∠EPO==
          =,即a2﹣3a+4=0,
          △=(﹣3)2﹣4×4=﹣7,無解
          故線段AO上不存在點P(點P不與A、O重合),使得OE的長為1.
          (3)假設存在這樣的點P,DE交x軸于點M,如圖2,

          ∵△PED是等腰三角形,
          ∴DP=PE,
          ∵DP⊥PE,四邊形ABCD為正方形
          ∴∠EPO+∠APD=90°,∠DAP=90°,∠PAD+∠APD=90°,
          ∴∠EPO=∠PDA,∠PEO=∠DPA,
          在△PEO和△DAP中,

          ∴△PEO≌△DAP,
          ∴PO=DA=4,OE=AP=PO﹣AO=4﹣3=1,
          ∴點P坐標為(﹣4,0).
          ∵DA⊥x軸,
          ∴DA∥EO,
          ∴∠ADM=∠OEM(兩直線平行,內(nèi)錯角相等),
          又∵∠AMD=∠OME(對頂角),
          ∴△DAM∽EOM,
          ==,
          ∵OM+MA=OA=3,
          ∴MA=×3=
          △PED與正方形ABCD重疊部分△ADM面積為×AD×AM=×4×=
          答:存在這樣的點P,點P的坐標為(﹣4,1),此時△PED與正方形ABCD重疊部分的面積為
          【解析】(1)利用點在二次函數(shù)圖象上,代入即可求得b,將二次函數(shù)換成交點式,即能得出B點的坐標,由AD=AB可算出D點坐標;
          (2)假設存在,由DP⊥AE,找出∠EPO=∠PDA,利用等角的正切相等,可得出一個關于OP長度的一元二次方程,由方程無解可得知不存在這樣的點;
          (3)利用角和邊的關系,找到全等,再利用三角形相似,借助相似比即可求得AM,求出△ADM的面積即是所求.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0)下列說法:
          ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是拋物線上的兩點,則y1>y2
          其中說法正確的是( 。

          A.①②
          B.②③
          C.②③④
          D.①②④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.

          (1)求出∠AOB及其補角的度數(shù);

          (2)①請求出∠DOC和∠AOE的度數(shù);

          ②判斷∠DOE與∠AOB是否互補,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在一個不透明袋子中裝有顏色不同的黑、白兩種球共40個球,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程.如圖是摸到白球的頻率折線統(tǒng)計圖:

          (1)根據(jù)統(tǒng)計圖,估算盒子里黑、白兩種顏色的球各多少個?

          (2)如果要使摸到白球的概率為,需要往盒子里再放入多少個白球?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E.
          (1)求證:ABAF=CBCD;
          (2)已知AB=15cm,BC=9cm,P是線段DE上的動點.設DP=x cm,梯形BCDP的面積為ycm2
          ①求y關于x的函數(shù)關系式.
          ②y是否存在最大值?若有求出這個最大值,若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求ABCD的周長和面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線,將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HGAB于點E,連接DEAC于點F,連接FG.則下列結論:

          ①四邊形AEGF是菱形;②△HED的面積是1﹣③∠AFG=112.5°;BC+FG=.其中正確的結論是( 。

          A. ①②③ B. ①②④ C. ①③④ D. ②③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點A,B分別在y軸和x軸上,∠ABO=60°,在坐標軸上找一點P,使得△PAB是等腰三角形,則符合條件的點P共有( )

          A. 3個 B. 4個 C. 5個 D. 6個

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,ACB=90°,AC=BC=4,DBC的中點, ,垂足為E.過點BBF//ACDE的延長線于點F,連接CF,AF.現(xiàn)有如下結論:

          ①BF=2;②;③AD平分∠CAB;④AF=;⑤CAF=CFB.其中正確的結論是( 。

          A. ①②③ B. ①②④ C. ②③④⑤ D. ①②④⑤

          查看答案和解析>>

          同步練習冊答案