日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題背景:如圖,點為線段外一動點,且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點的延長線上時,線段取得最大值

          問題解決:如圖,點為線段外一動點,且,若,,連接,當(dāng)取得最大值時,的度數(shù)為_________

          【答案】

          【解析】

          AC為直角邊,作等腰直角三角形CEA,CE =CA,∠ECA=90°,連接EB,利用SAS證出△ECB≌△ACD,從而得出EB=AD,然后根據(jù)兩點之間線段最短即可得出當(dāng)AD取得最大值時,E、AB三點共線,然后求出∠CAB的度數(shù),根據(jù)等邊對等角和三角形的內(nèi)角和定理即可求出∠ACB,從而求出∠ACD

          解:以AC為直角邊,作等腰直角三角形CEA,CE =CA,∠ECA=90°,連接EB

          ∴∠ECA+∠ACB=BCD+∠ACB

          ∴∠ECB=ACD

          在△ECB和△ACD

          ∴△ECB≌△ACD

          EB=AD

          ∴當(dāng)AD取得最大值時,EB也取得最大值

          根據(jù)兩點之間線段最短可知EBEAEB,當(dāng)且僅當(dāng)E、A、B三點共線時取等號

          即當(dāng)AD取得最大值時,EA、B三點共線,

          ∵△CEA為等腰直角三角形

          ∴∠CAE=45°

          ∴此時∠CAB=180°―CAE=135°

          ∴∠ACB=ABC=180°-∠CAB=°

          ∴∠ACD=ACB+∠BCD=

          故答案為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解下列方程:

          (1)x(x﹣1)=1﹣x

          (2)x2+2x﹣35=0

          (3)4x2﹣3=12x

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,D,E分別是AB,AC上的點,BECD交與點O,給出下列四個條件:①∠DBO=ECO,②∠BDO=CEO,③BD=CE,④OB=OC.

          1)從上述四個條件中,任選兩個為條件,可以判定ABC是等腰三角形?寫出所有可能的情況.

          2)選擇(1)中的某一種情形,進行說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等邊中,分別為的中點,延長至點,使,連結(jié)

          1)求證:

          2)猜想:的面積與四邊形的面積的關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2016四川省攀枝花市)某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.

          (1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?

          (2)設(shè)每月用水量為x噸,應(yīng)交水費為y元,請寫出yx之間的函數(shù)關(guān)系式;

          (3)小明家5月份用水26噸,則他家應(yīng)交水費多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在等邊中,點,分別在邊,上.

          1)如圖,若,以為邊作等邊,于點,連接

          求證:①;

          平分

          2)如圖,若,作,的延長線于點,求證:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知兩條射線OMCN,動線段AB的兩個端點AB分別在射線OM、CN上,且∠C=OAB=108°,F在線段CB上,OB平分∠AOF

          1)請在圖中找出與∠AOC相等的角,并說明理由;

          2)判斷線段ABOC 的位置關(guān)系是什么?并說明理由;

          3)若平行移動AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點AD、E在同一直線上,若AE24,DE17

          1)求證:△CAD≌△CBE

          2)求線段AB的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖.在Rt△ABC,A=90°,AB=AC=4ERt△ABC邊上一點以每秒1單位的速度從點C出發(fā),沿著CAB的路徑運動到點B為止連接CE以點C為圓心,CE長為半徑作C,C與線段BC交于點D設(shè)扇形DCE面積為S,E的運動時間為t則在以下四個函數(shù)圖象中,最符合扇形面積S關(guān)于運動時間t的變化趨勢的是( )

          A. B.

          C. D.

          查看答案和解析>>

          同步練習(xí)冊答案