日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=ax2+bx+c與拋物線y=-x2-3x+7的形狀相同,頂點(diǎn)在直線x=1上,且頂點(diǎn)到x軸的距離為5,則此拋物線的解析式為
          y=x2-2x+6 或y=x2-2x-4 或y=-x2+2x+4 或y=-x2+2x-6
          y=x2-2x+6 或y=x2-2x-4 或y=-x2+2x+4 或y=-x2+2x-6
          分析:先根據(jù)拋物線y=ax2+bx+c與拋物線y=-x2-3x+7的形狀相同可知a=±1,則拋物線解析式為y=±x2+bx+c,由頂點(diǎn)在直線x=1上可求出b的值,再根據(jù)頂點(diǎn)到x軸的距離為5求出c的值即可.
          解答:解:∵拋物線y=ax2+bx+c與拋物線y=-x2-3x+7的形狀相同,
          ∴a=±1,
          ∴拋物線解析式為y=±x2+bx+c,
          ∵拋物線頂點(diǎn)在直線x=1上,
          ∴a=±1,
          ∴當(dāng)a=-1時(shí),-
          b
          2×(-1)
          =1,
          ∴b=2;
          當(dāng)a=1時(shí),-
          b
          2×1
          =1,
          ∴b=-2,
          ∴拋物線解析式為y=-x2+2x+c=-(x-1)2+c+1,或y=x2-2x+c=(x-1)2+c-1,
          ∵拋物線頂點(diǎn)到x軸的距離為5.
          ∴當(dāng)y=x2-2x+c=(x-1)2+c-1
          ∴|c-1|=5,解得c=-4或c=6,
          ∴此時(shí)拋物線的解析式為:y=x2-2x+6 或y=x2-2x-4;
          ∵當(dāng)拋物線的解析式為y=-x2+2x+c=-(x-1)2+c+1時(shí),
          ∴|c+1|=5,解得c=4或c=-6,
          ∴此時(shí)拋物線的解析式為:y=-x2+2x+4 或y=-x2+2x-6.
          ∴拋物線的解析式為:y=x2-2x+6或y=x2-2x-4或y=-x2+2x+4或y=-x2+2x-6.
          點(diǎn)評(píng):本題考查的是二次函數(shù)的圖象與幾何變換,解答此題的關(guān)鍵是根據(jù)拋物線的對(duì)稱軸方程得出拋物線的頂點(diǎn)式,得出c的值,進(jìn)而得出拋物線的解析式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
          (1)求拋物線的解析式;
          (2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
          (3)求四邊形ABDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知拋物線y=ax2和直線y=kx的交點(diǎn)是P(-1,2),則a=
           
          ,k=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          2、已知拋物線y=ax2+bx+c的開(kāi)口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線有(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過(guò)坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
          2
          ,b+ac=3.
          (1)求b的值;
          (2)求拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.
          (1)使用a、c表示b;
          (2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
          (3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
          ca
          ,b+8
          ),求當(dāng)x≥1時(shí)y1的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案