日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】某超市第一次用6000元購進甲、乙兩種商品,其中甲商品件數的2倍比乙商品件數的3倍多20件,甲、乙兩種商品的進價和售價如下表(利潤=售價﹣進價)

          進價(/)

          20

          28

          售價(/)

          26

          40

          (1)該超市第一次購進甲、乙兩種商品的件數分別是多少?

          (2)該超市將第一次購進的甲、乙兩種商品全部賣出后一共可獲得多少利潤?

          (3)該超市第二次以同樣的進價又購進甲、乙兩種商品.其中甲商品件數是第一次的2倍,乙商品的件數不變.甲商品按原價銷售,乙商品打折銷售.第二次甲、乙兩種商品銷售完以后獲得的利潤比第一次獲得的利潤多560元,則第二次乙商品是按原價打幾折銷售的?

          【答案】(1) 該超市第一次購進甲商品160件,乙商品100件; (2) 可獲得2160元利潤;(3) 第二次乙商品是按原價打九折銷售的

          【解析】

          (1)設該超市第一次購進甲商品件,乙商品件,根據總價=單價×數量及購進甲商品件數的2倍比乙商品件數的3倍多20件,即可得出關于,的二元一次方程組,解之即可得出結論;
          (2)根據總利潤=每件利潤×銷售數量(購進數量),即可求出結論;

          (3)設第二次乙商品是按原價打m折銷售的,根據總利潤=每件利潤×銷售數量(購進數量),即可得出關于m的一元一次方程,解之即可得出結論.

          (1)設該超市第一次購進甲商品件,乙商品件,
          依題意,得:
          解得:
          答:該超市第一次購進甲商品160件,乙商品100件;
          (2)(26-20)×160+(40-28)×100=2160()
          答:該超市將第一次購進的甲、乙兩種商品全部賣出后一共可獲得2160元利潤;
          (3)設第二次乙商品是按原價打m折銷售的,

          依題意,得:(26-20)×160×2+(40-28)×100=2160+560,
          解得
          答:第二次乙商品是按原價打九折銷售的.

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】完成下面的證明:

          已知:如圖,點DE,F分別在線段AB,BC,AC上,連接DE、EF,DM平分∠ADEEF于點M,∠1+2=180°.

          求證: B =BED

          證明:∵∠1+2=180°(已知),

          又∵∠1+BEM=180°( ),

          ∴∠2=BEM   ),

          DM_______________________________________________).

          ∴∠ADM =B_________________________________________),

          MDE =BED_______________________________________).

          又∵DM平分∠ADE (已知),

          ∴∠ADM =MDE ( )

          ∴∠B =BED(等量代換).

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,一枚運載火箭從地面L處發(fā)射,當火箭到達A點時,從位于距發(fā)射架底部4km處的地面雷達站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結果取小數點后兩位)?

          (參考數據:sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,
          sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法正確的個數是( )
          ①a>0;②b>0;③c<0;④b2﹣4ac>0;⑤a+b+c=0.

          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達終點后停止,設甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),st之間的函數關系如圖所示,有下列結論:

          ①出發(fā)1小時時,甲、乙在途中相遇;

          ②出發(fā)1.5小時時,乙比甲多行駛了60千米;

          ③出發(fā)3小時時,甲、乙同時到達終點;

          ④甲的速度是乙速度的一半.

          其中,正確結論的個數是( 。

          A. 4 B. 3 C. 2 D. 1

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】完成下面推理過程:

          如圖,已知∠1 =∠2,∠B =∠C,可推得ABCD.理由如下:

          ∵∠1 =∠2(已知),

          且∠1 =∠CGD______________________ ),

          ∴∠2 =∠CGD(等量代換).

          CEBF___________________________).

          ∴∠ =∠C__________________________).

          又∵∠B =∠C(已知),

          ∴∠ =∠B(等量代換).

          ABCD________________________________.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在四邊形ABCD中,AD∥BC,∠BAD=90°,對角線BD⊥DC.

          (1)求證:△ABD∽△DCB;
          (2)如果AD=4,BC=9,求BD的長.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,已知二次函數y=ax2+bx+c的圖象過點A(﹣1,0)和點C(0,3),對稱軸為直線x=1.

          (1)求該二次函數的關系式和頂點坐標;
          (2)結合圖象,解答下列問題:
          ①當﹣1<x<2時,求函數y的取值范圍.
          ②當y<3時,求x的取值范圍.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】ABC中,AD是∠BAC的角平分線,AE是△ABC的高.

          1)如圖1,若∠B40°,∠C62°,請說明∠DAE的度數;

          2)如圖2(∠B<∠C),試說明∠DAE、∠B、∠C的數量關系;

          3)如圖3,延長AC到點F,∠CAE和∠BCF的角平分線交于點G,求∠G的度數.

          查看答案和解析>>

          同步練習冊答案