日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=8cm,BC=4cm,AB=5cm.從初始時刻開始,動點P,Q 分別從點A,B同時出發(fā),運動速度均為1cm/s,動點P沿A--B--C--E的方向運動,到點E停止;動點Q沿B--C--E--D的方向運動,到點D停止,設運動時間為xs,△PAQ的面積為y cm2,(這里規(guī)定:線段是面積為0的三角形)
          解答下列問題:
          (1)當x=2s時,y=
          2
          2
          cm2;當x=
          9
          2
           s時,y=
          9
          9
          cm2;
          (2)當5≤x≤14 時,求y與x之間的函數關系式;
          (3)當動點P在線段BC上運動時,求出y=
          4
          15
          S梯形ABCD時x的值.
          分析:(1)當x=2s時,AP=2,BQ=2,利用三角形的面積公式直接可以求出y的值,當x=
          9
          2
          s,時,三角形PAQ的高就是4,底為4.5,由三角形的面積公式可以求出其解.
          (2)當5≤x≤14 時,求y與x之間的函數關系式.要分為三種不同的情況進行表示:當5≤x≤9時,當9<x≤13時,當13<x≤14時.
          (3)可以由已知條件求出S梯形ABCD,然后根據條件求出y值,代入當5≤x≤9時的解析式就可以求出x的值.
          解答:解:(1)當x=2s時,AP=2,BQ=2
          ∴y=
          2×2
          2
          =2,
          當x=
          9
          2
          s,時,AP=4.5,Q點在EC上,
          ∴y=
          4.5×4
          2
          =9,
          故答案為:2;9

          (2)當5≤x≤9時
          y=S梯形ABCQ-S△ABP-S△PCQ=
          1
          2
          (5+x-4)×4-
          1
          2
          ×5(x-5)-
          1
          2
          (9-x)(x-4),
          即y=
          1
          2
          x2-7x+
          65
          2
          ,
          當9<x≤13時
          y=
          1
          2
          (x-9+4)(14-x)
          y=-
          1
          2
          x2+
          19
          2
          x-35,
          當13<x≤14時
          y=
          1
          2
          ×8(14-x)
          y=-4x+56;

          (3)當動點P在線段BC上運動時,
          ∵y=S梯形ABCD=
          4
          15
          ×
          1
          2
          (4+8)×5=8,
          ∴8=
          1
          2
          x2-7x+
          65
          2
          ,
          即x2-14x+49=0,解得:x1=x2=7
          ∴當x=7時,y=
          4
          15
          S梯形ABCD
          點評:本題考查了用函數關系式表示變化過程中三角形的面積、梯形的面積等多個知識點.運用了分類討論的數學思想,是一道分段函數試題,難度中等.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          精英家教網已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
          A、
          8
          6
          3
          B、4
          6
          C、
          8
          2
          3
          D、4
          2

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
          3
          對.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          精英家教網如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
          2
          10

          (1)求BC的長;
          (2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          精英家教網如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

          查看答案和解析>>

          同步練習冊答案