日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•德陽)在平面直角坐標(biāo)xOy中,(如圖)正方形OABC的邊長為4,邊OA在x軸的正半軸上,邊OC在y軸的正半軸上,點(diǎn)D是OC的中點(diǎn),BE⊥DB交x軸于點(diǎn)E.
          (1)求經(jīng)過點(diǎn)D、B、E的拋物線的解析式;
          (2)將∠DBE繞點(diǎn)B旋轉(zhuǎn)一定的角度后,邊BE交線段OA于點(diǎn)F,邊BD交y軸于點(diǎn)G,交(1)中的拋物線于M(不與點(diǎn)B重合),如果點(diǎn)M的橫坐標(biāo)為
          12
          5
          ,那么結(jié)論OF=
          1
          2
          DG能成立嗎?請說明理由;
          (3)過(2)中的點(diǎn)F的直線交射線CB于點(diǎn)P,交(1)中的拋物線在第一象限的部分于點(diǎn)Q,且使△PFE為等腰三角形,求Q點(diǎn)的坐標(biāo).
          分析:(1)本題關(guān)鍵是求得E點(diǎn)坐標(biāo),然后利用待定系數(shù)法求拋物線解析式.如題圖,可以證明△BCD≌△BAE,則AE=CD,從而得到E點(diǎn)坐標(biāo);
          (2)首先求出M點(diǎn)坐標(biāo),然后利用待定系數(shù)法求直線MB的解析式,令x=0,求得G點(diǎn)坐標(biāo),進(jìn)而得到線段CG、DG的長度;由△BCG≌△BAF,可得AF=CG,從而求得OF的長度.比較OF與DG的長度,它們滿足OF=
          1
          2
          DG的關(guān)系,所以結(jié)論成立;
          (3)本問關(guān)鍵在于分類討論.△PFE為等腰三角形,如解答圖所示,可能有三種情況,需逐一討論并求解.
          解答:解:(1)∵BE⊥DB交x軸于點(diǎn)E,OABC是正方形,
          ∴∠DBC=∠EBA.
          在△BCD與△BAE中,
          ∠BCD=∠BAE=90°
          BC=BA
          ∠DBC=∠EBA
          ,
          ∴△BCD≌△BAE(ASA),
          ∴AE=CD.
          ∵OABC是正方形,OA=4,D是OC的中點(diǎn),
          ∴A(4,0),B(4,4),C(0,4),D(0,2),∴E(6,0).
          設(shè)過點(diǎn)D(0,2),B(4,4),E(6,0)的拋物線解析式為y=ax2+bx+c,則有:
          c=2
          16a+4b+c=4
          36a+6b+c=0

          解得
          a=-
          5
          12
          b=
          13
          6
          c=2
          ,
          ∴經(jīng)過點(diǎn)D、B、E的拋物線的解析式為:y=-
          5
          12
          x2+
          13
          6
          x+2.

          (2)結(jié)論OF=
          1
          2
          DG能成立.理由如下:
          由題意,當(dāng)∠DBE繞點(diǎn)B旋轉(zhuǎn)一定的角度后,同理可證得△BCG≌△BAF,
          ∴AF=CG.
          ∵xM=
          12
          5
          ,
          ∴yM=-
          5
          12
          xM2+
          13
          6
          xM+2=
          24
          5
          ,∴M(
          12
          5
          24
          5
          ).
          設(shè)直線MB的解析式為yMB=kx+b,
          ∵M(jìn)(
          12
          5
          24
          5
          ),B(4,4),
          12
          5
          k+b=
          24
          5
          4k+b=4
          ,
          解得
          k=-
          1
          2
          b=6
          ,
          ∴yMB=-
          1
          2
          x+6,
          ∴G(0,6),
          ∴CG=2,DG=4.
          ∴AF=CG=2,OF=OA-AF=2,F(xiàn)(2,0).
          ∵OF=2,DG=4,
          ∴結(jié)論OF=
          1
          2
          DG成立.

          (3)如圖,△PFE為等腰三角形,可能有三種情況,分類討論如下:
          ①若PF=FE.
          ∵FE=4,BC與OA平行線之間距離為4,
          ∴此時P點(diǎn)位于射線CB上,
          ∵F(2,0),
          ∴P(2,4),此時直線FP⊥x軸,
          ∴xQ=2,
          ∴yQ=-
          5
          12
          xQ2+
          13
          6
          xQ+2=
          14
          3
          ,∴Q1(2,
          14
          3
          );
          ②若PF=PE.
          如圖所示,∵AF=AE=2,BA⊥FE,
          ∴△BEF為等腰三角形,
          ∴此時點(diǎn)P、Q與點(diǎn)B重合,
          ∴Q2(4,4);
          ③若PE=EF.
          ∵FE=4,BC與OA平行線之間距離為4,
          ∴此時P點(diǎn)位于射線CB上,
          ∵E(6,0),
          ∴P(6,4).
          設(shè)直線yPF的解析式為yPF=kx+b,
          ∵F(2,0),P(6,4),
          2k+b=0
          6k+b=4
          ,
          解得
          k=1
          b=-2

          ∴yPF=x-2.
          ∵Q點(diǎn)既在直線PF上,也在拋物線上,
          -
          5
          12
          x2+
          13
          6
          x+2=x-2,化簡得5x2-14x-48=0,
          解得x1=
          24
          5
          ,x2=-2(不合題意,舍去)
          ∴xQ=
          24
          5
          ,
          ∴yQ=xQ-2=
          24
          5
          -2=
          14
          5

          ∴Q3
          24
          5
          14
          5
          ).
          綜上所述,Q點(diǎn)的坐標(biāo)為Q1(2,
          14
          3
          )或Q2(4,4)或Q3
          24
          5
          ,
          14
          5
          ).
          點(diǎn)評:本題是二次函數(shù)綜合題,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、待定系數(shù)法求一次函數(shù)解析式、解一元二次方程、全等三角形的判定與性質(zhì)以及等腰三角形性質(zhì)等知識點(diǎn),考查內(nèi)容涉及初中數(shù)學(xué)代數(shù)與幾何的多個重要知識點(diǎn),難度較大.本題第(3)問需要針對等腰三角形△PFE的三種可能情況進(jìn)行分類討論,避免漏解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•德陽)有A、B兩個不透明的布袋,A袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字0和-2;B袋中有三個完全相同的小球,分別標(biāo)有數(shù)字-2、0和1.小明從A袋中隨機(jī)取出一個小球,記錄標(biāo)有的數(shù)字為x,再從B袋中隨機(jī)取出一個小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
          (1)寫出點(diǎn)Q所有可能的坐標(biāo);
          (2)求點(diǎn)Q在x軸上的概率;
          (3)在平面直角坐標(biāo)系xOy中,⊙O的半徑是2,求過點(diǎn)Q能作⊙O切線的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•德陽模擬)如圖,在Rt△ABC中,∠ABC=90°,D是AC的中點(diǎn),⊙O經(jīng)過A、B、D三點(diǎn),CB的延長線交⊙O于點(diǎn)E.
          (1)求證:AE=CE;
          (2)若EF與⊙O相切于點(diǎn)E,交AC的延長線于點(diǎn)F,且CD=CF=2cm,求⊙O的直徑;
          (3)若EF與⊙O相切于點(diǎn)E,點(diǎn)C在線段FD上,且CF:CD=2:1,求sin∠CAB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•德陽)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2),⊙A的半徑是2,⊙P的半徑是1,滿足與⊙A及x軸都相切的⊙P有
          4
          4
          個.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•德陽)在同一平面直角坐標(biāo)系內(nèi),將函數(shù)y=2x2+4x+1的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點(diǎn)坐標(biāo)是( 。

          查看答案和解析>>

          同步練習(xí)冊答案