日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,3),以O(shè)為圓心,OA為半徑作圓,該圓與坐標(biāo)軸分別交于A、B、C、D四點(diǎn),弦AF交半徑OB于點(diǎn)E,過點(diǎn)F作⊙O的切線分別交x軸、y軸于P、Q兩點(diǎn).
          (1)求證:PE=PF;
          (2)若∠FAQ=30°,求直線PQ的函數(shù)表達(dá)式;
          (3)在(2)的前提下,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以單位長度/s的速度沿向終點(diǎn)F運(yùn)動(dòng)(如圖2),設(shè)運(yùn)動(dòng)時(shí)間為t s,那么當(dāng)t為何值時(shí),△AMF的面積最大?最大面積是多少?


          【答案】分析:(1)連OF,如圖1,根據(jù)切線的性質(zhì)得到∠1+∠2=90°,而∠4+∠A=90°,∠4=∠3,則∠3+∠A=90°,而∠1=∠A,可得到∠2=∠3,即可得到結(jié)論;
          (2)由∠FAQ=30°,易得到∠FQO=30°,而OF=3,根據(jù)含30°的直角三角形三邊的關(guān)系得到OQ=2OF=6,OP=OQ=2,則P(-2,0),Q(0,-6),然后利用待定系數(shù)法確定直線PQ的函數(shù)表達(dá)式;
          (3)要使△AMF的面積最大,則AF邊上的高最大,即M運(yùn)動(dòng)到的中點(diǎn).過O作ON⊥AF于N,交于M′,如圖2,根據(jù)垂徑定理得到AN=FN,弧AM′=弧FM′,在Rt△ANO中,根據(jù)含30°的直角三角形三邊的關(guān)系得到ON=OA=,AN=,則AF=2AN=3,M′N=+3=,然后根據(jù)三角形面積公式即可求最大面積即△AM′F的面積;又∠AOF=120°,得到∠AOM′=∠FOM′=120°,根據(jù)弧長公式計(jì)算出弧AM′的長度,然后除以速度即可得到此時(shí)t的值.
          解答:(1)證明:連OF,如圖1,
          ∵PQ切⊙O于F點(diǎn),
          ∴OF⊥PQ,
          ∴∠1+∠2=90°,
          又∵∠4+∠A=90°,
          而∠4=∠3,
          ∴∠3+∠A=90°,
          又∵OA=OF,
          ∴∠1=∠A,
          ∴∠2=∠3,
          ∴PE=PF;

          (2)解:如圖1,
          ∵∠FAQ=30°,
          ∴∠1=30°,
          ∴∠FOQ=60°,
          ∴∠FQO=30°,
          又∵A點(diǎn)的坐標(biāo)為(0,3),
          ∴OF=3,
          ∴OQ=2OF=6,
          OP=OQ=2,
          ∴P(-2,0),Q(0,-6),
          設(shè)直線PQ的函數(shù)表達(dá)式為y=kx+b,
          把P(-2,0),Q(0,-6)代入得,-2k+b=0,b=-6,解得k=-,b=-6,
          ∴直線PQ的函數(shù)表達(dá)式為y=-x-6;

          (3)解:要使△AMF的面積最大,則AF邊上的高最大,過O作ON⊥AF于N,交于M′,如圖2,
          ∴AN=FN,弧AM′=弧FM′,
          在Rt△ANO中,∠NAO=30°,OA=3,
          ∴ON=OA=,AN=,
          ∴AF=2AN=3,
          ∴M′N=+3=,
          ∴△AM′F的面積=××3=;
          ∵∠AOF=120°,
          ∴∠AOM′=∠FOM′=120°,
          ∴弧AM′的長度==2π,
          ∴t==6(s),
          ∴當(dāng)t為6s時(shí),△AMF的面積最大,最大面積是
          點(diǎn)評(píng):本題考查了一次函數(shù)的綜合題:利用待定系數(shù)法確定一次函數(shù)的解析式;同時(shí)運(yùn)用切線的性質(zhì)定理、垂徑定理、圓周角定理以及弧長公式;也考查了含30°的直角三角形三邊的關(guān)系.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案