【題目】某商店以20元/千克的單價(jià)新進(jìn)一批商品,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量y(千克)與銷售單價(jià)x(元/千克)之間為一次函數(shù)關(guān)系,如圖所示.
(1)求y與x的函數(shù)表達(dá)式;
(2)要使銷售利潤(rùn)達(dá)到800元,銷售單價(jià)應(yīng)定為每千克多少元?
【答案】(1);(2)40元或60元.
【解析】試題(1)當(dāng)20≤x≤80時(shí),利用待定系數(shù)法即可得到y與x的函數(shù)表達(dá)式;
(2)根據(jù)銷售利潤(rùn)達(dá)到800元,可得方程(x﹣20)(﹣x+80)=800,解方程即可得到銷售單價(jià).
試題解析:解:(1)當(dāng)0<x<20時(shí),y=60;
當(dāng)20≤x≤80時(shí),設(shè)y與x的函數(shù)表達(dá)式為y=kx+b,把(20,60),(80,0)代入,可得: ,解得:
,∴y=﹣x+80,∴y與x的函數(shù)表達(dá)式為
;
(2)若銷售利潤(rùn)達(dá)到800元,則(x﹣20)(﹣x+80)=800,解得x1=40,x2=60,∴要使銷售利潤(rùn)達(dá)到800元,銷售單價(jià)應(yīng)定為每千克40元或60元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于二象限內(nèi)的A點(diǎn)和四象限內(nèi)的B點(diǎn),與x軸將于點(diǎn)C,連接AO,已知AO=2
,tan∠AOC=
,點(diǎn)B的坐標(biāo)為(a,﹣4).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校積極參與垃圾分類活動(dòng),以班級(jí)為單位收集可回收的垃圾,下面是七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
某校七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表
組別(kg) | 頻數(shù) |
4.0~4.5 | 2 |
4.5~5.0 | a |
5.0~5.5 | 3 |
5.5~6.0 | 1 |
(1)求a的值;
(2)已知收集的可回收垃圾以0.8元/kg被回收,該年級(jí)這周收集的可回收垃圾被回收后所得的金額能否達(dá)到50元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來(lái)的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、E、F,得△DEF,則下列說(shuō)法正確的個(gè)數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長(zhǎng)比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過(guò)點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)
(k ≠ 0) 在第一象限內(nèi)的圖象交于點(diǎn)A(1,m).
(1) 求反比例函數(shù)的表達(dá)式;
(2) 點(diǎn)B在反比例函數(shù)的圖象上, 且點(diǎn)B的橫坐標(biāo)為2. 若在x軸上存在一點(diǎn)M,使MA+MB的值最小,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,將拋物線平移到頂點(diǎn)恰好落在直線
上,并設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為
.
(1)求拋物線的解析式(用含、
的代數(shù)式表示);
(2)如圖②,與拋物線交于
、
、
三點(diǎn),
,
軸,
,
.
①求的面積(用含
的代數(shù)式表示);
②若的面積為1,當(dāng)
時(shí),
的最大值為-3,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線 經(jīng)過(guò)
,
兩點(diǎn),與
軸相交于點(diǎn)
,連接
.點(diǎn)
為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)
作
軸的垂線
,交直線
于點(diǎn)
,交
軸于點(diǎn)
.
Ⅰ 求拋物線的表達(dá)式;
Ⅱ 當(dāng) 位于
軸右邊的拋物線上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)
作
直線
,
為垂足.當(dāng)點(diǎn)
運(yùn)動(dòng)到何處時(shí),以
,
,
為頂點(diǎn)的三角形與
相似?并求出此時(shí)點(diǎn)
的坐標(biāo);
Ⅲ 如圖2,當(dāng)點(diǎn) 在位于直線
上方的拋物線上運(yùn)動(dòng)時(shí),連接
,
.請(qǐng)問(wèn)
的面積
能否取得最大值?若能,請(qǐng)求出最大面積
,并求出此時(shí)點(diǎn)
的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com