(本題滿分12分)
如圖,已知拋物線y=x2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,求點P的坐標;
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形為直角梯形?若存在,請求出點Q的坐標;若不存在,請說明理由.
(1)拋物線的解析式為y=x2+2x-3 (2)點坐標為(-1,-4)(3)點Q的坐標為(-2,-3)
【解析】
試題分析:解:(1)把A(1,0),B(0,-3)代入y=x2+bx-3a中,得
解得
∴拋物線的解析式y=x2+2x-3
(2)令y=0,得x2+2x-3=0,
解得x1=-3,x2=1
∴點C(-3,0)
∵B(0,-3)
∴△BOC為等腰直角三角形.
∴∠CBO=45°過點P作PD⊥y軸,垂足為D,
∵PB⊥BC,∴∠PBD=45°∴PD=BD
所以可設點P(x,-3+x)
則有-3+x=x2+2x-3,∴x=-1,所以P點坐標為(-1,-4)
(3)由(2)知,BC⊥BP
當BP為直角梯形一底時,由圖象可知點Q不可能在拋物線上.
若BC為直角梯形一底,BP為直角梯形腰時,
∵B(0,-3),C(-3,0),
∴直線BC的解析式為y=-x-3
∵直線PQ∥BC,且P(-1,-4),
∴直線PQ的解析式為y=-(x+1)-3-1即y=-x-5
聯立方程組得
解得x1=-1,x2=-2
∴x=-2,y=-3,即點Q(-2,-3)
∴符合條件的點Q的坐標為(-2,-3)
考點:二次函數
點評:本題難度較大。主要考查學生對幾種函數的綜合運用。是中考的?碱}型,復習備考時應加強訓練。
科目:初中數學 來源: 題型:
5 | 2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省鹽城市九年級上學期學情調查數學卷 題型:解答題
(本題滿分12分)某商場購進一批單價為16元日用品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格,經試驗發(fā)現,若按每件20元的價格銷售時,每月能賣360件,若按每件25元的價格銷售時,每月能賣210件,假定每月銷售件數Y(件)是價格X(元/件)的一次函數
1.(1)試求Y 與X之間的關系式。
2.(2)在商品積壓,且不考慮其它因素的條件下,問銷售價格定為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本)
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省海安縣五校聯考九年級上學期期中考試數學卷 題型:解答題
(本題滿分12分)如圖,⊙O的半徑為1,點P是⊙O上一點,弦AB垂直平分線段OP,點D是弧APB上任一點(與端點A、B不重合),DE⊥AB于點E,以點D為圓心、DE長為半徑作⊙D,分別過點A、B作⊙D的切線,兩條切線相交于點C.
1.(1)求弦AB的長;
2.(2)判斷∠ACB是否為定值,若是,求出∠ACB的大;否則,請說明理由;
3.(3)記△ABC的面積為S,若=4
,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省揚州市八年級第一學期期末考試數學卷 題型:解答題
(本題滿分12分)如圖①,一條筆直的公路上有A、B、C 三地,B、C 兩地相距 150 千米,甲、乙兩輛汽車分別從B、C 兩地同時出發(fā),沿公路勻速相向而行,分別駛往C、B 兩地.甲、乙兩車到A 地的距離、
(千米)與行駛時間
x(時)的關系如圖②所示.
根據圖象進行以下探究:
1.(1)請在圖①中標出 A地的位置,并作簡要說明;
2.(2) 甲的速度為
,乙的速度為
.
3.(3)求圖②中M點的坐標,并解釋該點的實際意義;
4.(4)在圖②中補全甲車到達C地的函數圖象,求甲車到 A地的距離與行駛時間x的函數關系式;
5.(5)出發(fā)多長時間,甲、乙兩車距A點的距離相等?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com