日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點(diǎn)O為圓心的圓經(jīng)過(guò)A、D兩點(diǎn),且∠AOD=90°,則圓心O到弦AD的距離是(  )
          A、
          6
          cm
          B、
          10
          cm
          C、2
          3
          cm
          D、2
          5
          cm
          分析:易證△AOD是等腰直角三角形.則圓心O到弦AD的距離等于
          1
          2
          AD,所以可先求AD的長(zhǎng).
          解答:精英家教網(wǎng)解:以BC上一點(diǎn)O為圓心的圓經(jīng)過(guò)A、D兩點(diǎn),則OA=OD,△AOD是等腰直角三角形.
          易證△ABO≌△OCD,則OB=CD=4cm.
          在直角△ABO中,根據(jù)勾股定理得到OA2=20;
          在等腰直角△OAD中,過(guò)圓心O作弦AD的垂線(xiàn)OP.
          則OP=OA•sin45°=
          10
          cm.
          故選B.
          點(diǎn)評(píng):此題涉及圓中求半徑的問(wèn)題,此類(lèi)在圓中涉及弦長(zhǎng)、半徑、圓心角的計(jì)算的問(wèn)題,常把半弦長(zhǎng),半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過(guò)直角三角形予以求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長(zhǎng)為(  )
          A、
          8
          6
          3
          B、4
          6
          C、
          8
          2
          3
          D、4
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
          3
          對(duì).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          10、如圖,梯形ABCD中,AD∥BC,BD為對(duì)角線(xiàn),中位線(xiàn)EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
          2
          10

          (1)求BC的長(zhǎng);
          (2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對(duì)角線(xiàn)AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案