日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:⊙O1與⊙O2外切于點(diǎn)P,過(guò)點(diǎn)P的直線分別交⊙O1、⊙O2于點(diǎn)B、A,⊙O1的切線BN交⊙O2于點(diǎn)M、N,AC為⊙O2的弦.
          (1)如圖(1),設(shè)弦AC交BN于點(diǎn)D,求證:AP•AB=AC•AD;
          (2)如圖(2),當(dāng)弦AC繞點(diǎn)A旋轉(zhuǎn),弦AC的延長(zhǎng)線交直線BN于點(diǎn)D時(shí),試問(wèn):AP•AB=AC•AD是否仍然成立?證明你的結(jié)論.
          精英家教網(wǎng)
          分析:(1)過(guò)點(diǎn)P作兩圓的切線EF,連接CP并延長(zhǎng)交⊙O1于點(diǎn)G,連接BG.根據(jù)弦切角定理可以證明∠C=∠B,從而證明△APC∽△ADB,再根據(jù)相似三角形的性質(zhì)即可證明;
          (2)過(guò)點(diǎn)P作兩圓的切線EF,連接NP并延長(zhǎng)交⊙O1于點(diǎn)G,連接BG.根據(jù)弦切角定理和三角形的外角的性質(zhì)證明∠APC=∠D,從而根據(jù)兩角對(duì)應(yīng)相等得到△APC∽△ADB,再根據(jù)相似三角形的性質(zhì)即可證明.
          解答:精英家教網(wǎng)
          解:(1)過(guò)點(diǎn)P作兩圓的切線EF,連接CP并延長(zhǎng)交⊙O1于點(diǎn)G,連接BG.
          ∴∠1=∠C,∠2=∠G.
          ∵⊙O1的切線BN交⊙O2于點(diǎn)M、N,
          ∴∠3=∠G.
          又∠1=∠2,
          ∴∠C=∠3.
          又∠CAP=∠BAD,
          ∴△APC∽△ADB.
          AP
          AD
          =
          AC
          AB

          即AP•AB=AC•AD.

          (2)過(guò)點(diǎn)P作兩圓的切線EF,連接NP并延長(zhǎng)交⊙O1于點(diǎn)G,連接BG.連接CP,
          則∠APF=∠BPE=∠PBN=∠D+∠A,∠CPF=∠A,
          則∠APC=∠D.
          又∠PAC=∠DAB,
          ∴△APC∽△ADB.
          AP
          AD
          =
          AC
          AB
          ,
          即AP•AB=AC•AD.
          點(diǎn)評(píng):作兩圓的公切線是相切兩圓中常見(jiàn)的輔助線之一.熟練運(yùn)用弦切角定理、相似三角形的判定和性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A、B兩點(diǎn),O2在⊙O1上,AC是⊙O2的直徑,直線CB交⊙O1于D,E為AB延長(zhǎng)線上一點(diǎn),連接DE.
          (1)請(qǐng)你連接AD,證明:AD是⊙O1的直徑;
          (2)若∠E=60°,求證:DE是⊙O1的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:⊙O1與⊙O2相交于A、B兩點(diǎn),⊙O1的切線AC交⊙O2于點(diǎn)C.直線EF過(guò)點(diǎn)B交⊙O1于點(diǎn)E,交⊙O2于點(diǎn)F.精英家教網(wǎng)
          (1)若直線EF交弦AC于點(diǎn)K時(shí)(如圖1).求證:AE∥CF;
          (2)若直線EF交弦AC的延長(zhǎng)線于點(diǎn)時(shí)(如圖2).求證:DA•DF=DC•DE;
          (3)若直線EF交弦AC的反向延長(zhǎng)線于點(diǎn)(在圖3自作),試判斷(1)、(2)中的結(jié)論是否成立并證明你的正確判斷.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:⊙O1與⊙O2相交于點(diǎn)A、B,AC切⊙O2于點(diǎn)A,交⊙O1于點(diǎn)C.直線EF過(guò)點(diǎn)B,交⊙O1于點(diǎn)E,交⊙O2于點(diǎn)F.
          (1)設(shè)直線EF交線段AC于點(diǎn)D(如圖1).
          ①若ED=12,DB=25,BF=11,求DA和DC的長(zhǎng);
          ②求證:AD•DE=CD•DF;
          (2)當(dāng)直線EF繞點(diǎn)B旋轉(zhuǎn)交線段AC的延長(zhǎng)線于點(diǎn)D時(shí)(如圖2),試問(wèn)AD•DE=CD•DF是否仍然成立?證明你的結(jié)論.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•青島)已知,⊙O1與⊙O2的半徑分別是4和6,O1O2=2,則⊙O1與⊙O2的位置關(guān)系是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知圓O1與⊙O2外切,它們的圓心距為16cm,⊙O1的半徑是12cm,則⊙O2的半徑是
          4
          4
          cm.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案