日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD中,∠ABC=ADC=90°,BD平分∠ABC,DCB=60°,AB+BC=8,則AC的長是_____

          【答案】

          【解析】分析:設點OAC的中點,以O為圓心,OA為半徑作圓O,然后根據(jù)圓周角定理以及勾股定理即可求出答案.

          詳解:設點OAC的中點,以O為圓心,OA為半徑作圓O,

          ∵∠ABC=ADC=90°,

          ∴由圓周角定理可知:點DB在圓O上,

          BD平分∠ABC,

          AD=CD,

          ∴∠DCA=45°,

          ∴∠ACB=DCB-DCA=15°,

          連接OB,過點EBEAC于點E,

          ∴由圓周角定理可知:∠AOB=2ACB=30°

          OB=2BE,

          AC=2OB=4BE,

          AB=x,

          BC=8-x

          ABBC=BEAC,

          4BE2=x(8-x)

          AC2=16BE2=4x(8-x)

          由勾股定理可知:AC2=x2+(8-x)2

          4x(8-x)=x2+(8-x)2

          ∴解得:x=4±

          x=4+時,

          BC=8-x=4-

          AC=

          x=4-時,

          BC=8-x=4+時,

          AC=

          故答案為:

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】關于的方程的所有根都是比1小的正實數(shù),則實數(shù)的取值范圍是_______________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某數(shù)學興趣小組在全校范圍內(nèi)隨機抽取了50名同學進行我最喜愛的盧龍?zhí)禺a(chǎn)調(diào)查活動.

          調(diào)查問卷

          在下面四種盧龍?zhí)禺a(chǎn)中,你最喜愛的是(  )(單選)

          A.段家溝李子   B.石門核桃

          C.鮑子溝葡萄    D.火爐烤白薯

          將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:

          請根據(jù)所給信息解答以下問題:

          (1)請補全條形統(tǒng)計圖;

          (2)若全校有2000名同學,請估計全校同學中最喜愛段家溝李子的同學有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知∠1=2,∠B=C,可推得ABCD。理由如下:

          ∵∠1=2(已知)

          且∠1=4

          ∴∠2=4(等量代換)

          CEBF

          ∴∠ =BFD

          又∵∠B=C(已知)

          (等量代換)

          ABCD

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,O為直線AB上一點,∠AOC=50°OD平分∠AOC,DOE=90°.

          1)請你數(shù)一數(shù),圖中有______個小于平角的角;

          2)求出∠BOD的度數(shù);

          3)請通過計算說明OE是否平分∠BOC.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD中,ABDC,B=90°,F(xiàn)DC上一點,且FC=AB,EAD上一點,ECAF于點G.

          (1)求證:四邊形ABCF是矩形;

          (2)若EA=EG,求證:ED=EC.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,在數(shù)軸上AB兩點對應的數(shù)分別是6-6,∠DCE=90°CO重合,D點在數(shù)軸的正半軸上)

          1)如圖1,若CF平分∠ACE,則∠AOF=_______;

          2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t0<t<3)個單位后,再繞頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α.

          ①當t=1時,α=_________;

          ②猜想∠BCEα的數(shù)量關系,并證明;

          3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸正半軸向右平移t0<t<3)個單位,再繞頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負半軸向左平移t0<t<3)個單位,再繞頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1,若α,β滿足|α-β|=45°,請用t的式子表示αβ并直接寫出t的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】1)|﹣2|+|﹣3|

          28.63﹣(﹣1.37

          3)(﹣25)+34+156+(﹣65

          4)(﹣0.5)﹣2﹣(+2

          5)(﹣52)+24﹣(+74)+12

          6)﹣﹣(﹣)+(﹣)﹣(+

          7)(+)+(﹣)﹣(+)﹣(﹣

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(認識概念)

          P、Q分別是兩個圖形G1、G2上的任意一點,當P、Q兩點之間的距離最小時,我們把這個最小距離叫作圖形G1、G2的親密距離,記為d(G1G2).例如,如果點M、N分別是兩條相交直線a、b上的任意一點,則d(a,b)0

          (初步運用)

          如圖1,長方形四個頂點分別是點A、B、C、D,邊ABCD5,ADBC3.那么d(AB,CD)___,d(AD,BC)_____d(AD,AB)_____

          (深入探究)

          (1)在圖1中,如果將線段CD沿它所在直線平移(AB不動),且使d(CD,AB)不變,那么線段CD的中點偏離它原來位置的最大距離為______;

          (2)如圖2,線段AB∥直線CD,AB1,點ACD的距離為3,將線段AB繞點A旋轉(zhuǎn)90°后的對應線段為AB′,則d(AB′,CD)______

          查看答案和解析>>

          同步練習冊答案