日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 己知:正方形ABCD.
          (1)如圖1,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
          (2)如圖2,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
          (3)如圖3,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)α=90°時(shí),連接BE、DF,猜想當(dāng)AE與AD滿足什么數(shù)量關(guān)系時(shí),直線DF垂直平分BE.請(qǐng)直接寫出結(jié)論.
          (4)如圖4,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB得到四邊形BDEF,如果其對(duì)角線DF的長(zhǎng)度為
          6
          cm,那么四邊形BDEF的面積是多少?請(qǐng)直接寫出結(jié)論.
          分析:(1)根據(jù)正方形的性質(zhì)可得AB=AD,∠A=90°,然后求出BE=DF,BE⊥DF;
          (2)根據(jù)旋轉(zhuǎn)角求出∠BAE=∠DAF,然后利用“邊角邊”證明△ABE和△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=DF,全等三角形對(duì)應(yīng)角相等可得∠ABE=∠ADF,延長(zhǎng)DF交BE于O,求出∠ABE+∠2=90°,從而得到∠BOD=90°,根據(jù)垂直的定義得到BE⊥DF;
          (3)連接BD,直線DF垂直平分BE,可得AD+AE=BD,BD=
          2
          AD,解答出即可;
          (4)如圖,通過(guò)證明△DAF≌△BAE,可得DF=BE,結(jié)合(2)中結(jié)論,可得到各邊中點(diǎn)所組成的四邊形的形狀,進(jìn)而求出四邊形面積.
          解答:解:(1)在正方形ABCD中,AB=AD,∠A=90°,
          ∵AE=AF,
          ∴AB-AE=AD-AF,
          即BE=DF,
          ∵∠A=90°,
          ∴BE⊥DF,
          故BE=DF,BE⊥DF;

          (2)成立;
          理由:如圖②,∵△FAE是等腰直角三角形,
          ∴AE=AF,
          在正方形ABCD中,AB=AD,
          又∵∠BAE=∠DAF=α,
          ∴在△ABE和△ADF中,
          AB=AD
          ∠BAE=∠DAF
          AE=AF

          ∴△ABE≌△ADF(SAS),
          ∴BE=DF,∠ABE=∠ADF,
          延長(zhǎng)DF交BE于O,
          ∵∠ADF+∠1=90°,∠1=∠2(對(duì)頂角相等),
          ∴∠ABE+∠2=90°,
          ∴∠BOD=180°-90°=90°,
          ∴BE⊥DF,
          故BE=DF,BE⊥DF;

          (3)如圖③,連接BD,
          ∵直線DF垂直平分BE,
          ∴AD+AE=BD,BD=
          2
          AD,
          ∴AE=(
          2
          -1)AD;


          (4)如圖④,連接BE、DF,
          ∵△FAE是等腰直角三角形,
          ∴AE=AF,
          在正方形ABCD中,AB=AD,
          又∵∠BAE=∠DAF=α,
          ∴在△ABE和△ADF中,
          AB=AD
          ∠BAE=∠DAF
          AE=AF

          ∴△ABE≌△ADF(SAS),
          ∴BE=DF,∠ABE=∠ADF,
          設(shè)DF交BE于點(diǎn)P,
          ∵∠ADY+∠DYA=90°,∠DYA=∠BYP(對(duì)頂角相等),
          ∴∠ABE+∠BYP=90°,
          ∴BE⊥DF,
          故BE=DF,BE⊥DF;
          ∴順次連接四邊形BDEF各邊中點(diǎn)所組成的四邊形是正方形.
          ∴四邊形BDEF的面積是
          1
          2
          ×
          6
          ×
          6
          =3(cm2).
          點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),以及中點(diǎn)四邊形的判定,熟記各性質(zhì)求出三角形全等是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          己知:正方形ABCD.
          (1)如圖1,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
          (2)如圖2,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
          (3)如圖3,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)a=90°時(shí),連接BE、DF,猜想溝AE與AD滿足什么數(shù)量關(guān)系時(shí),直線DF垂直平分BE.請(qǐng)直接寫出結(jié)論.
          (4)如圖4,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點(diǎn)所組成的四邊形是什么特殊四邊形?請(qǐng)直接寫出結(jié)論.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          己知:正方形ABCD.
          (1)如圖①,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
          (2)如圖②,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
          (3)如圖③,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB,得到四邊形BDEF,則順次連接四邊形BDEF各邊中點(diǎn)所組成的四邊形是什么特殊四邊形?請(qǐng)直接寫出結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          己知:正方形ABCD.
          (1)如圖1,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
          (2)如圖2,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
          (3)如圖3,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)a=90°時(shí),連接BE、DF,猜想溝AE與AD滿足什么數(shù)量關(guān)系時(shí),直線DF垂直平分BE.請(qǐng)直接寫出結(jié)論.
          (4)如圖4,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點(diǎn)所組成的四邊形是什么特殊四邊形?請(qǐng)直接寫出結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年吉林省白城市鎮(zhèn)賚鎮(zhèn)中學(xué)九年級(jí)(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          己知:正方形ABCD.
          (1)如圖1,點(diǎn)E、點(diǎn)F分別在邊AB和AD上,且AE=AF.此時(shí),線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.
          (2)如圖2,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°時(shí),連接BE、DF,此時(shí)(1)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
          (3)如圖3,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)a=90°時(shí),連接BE、DF,猜想溝AE與AD滿足什么數(shù)量關(guān)系時(shí),直線DF垂直平分BE.請(qǐng)直接寫出結(jié)論.
          (4)如圖4,等腰直角三角形FAE繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時(shí),連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點(diǎn)所組成的四邊形是什么特殊四邊形?請(qǐng)直接寫出結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案