日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cmBC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).

          1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?

          2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于5cm?

          3)在(1)中,△PQB的面積能否等于7cm2?說(shuō)明理由.

          【答案】11;(22;(3)不能.

          【解析】

          1)設(shè)P、Q分別從A、B兩點(diǎn)出發(fā),x秒后,AP=xcm,PB=5-xcmBQ=2xcm則△PBQ的面積等于×2x5-x),令該式等于4,列出方程求出符合題意的解;

          2)利用勾股定理列出方程求解即可;

          3)看△PBQ的面積能否等于7cm2,只需令×2x5-x=7,化簡(jiǎn)該方程后,判斷該方程的△與0的關(guān)系,大于或等于0則可以,否則不可以.

          設(shè)t秒后,則:AP=tcm,BP=5tcm;BQ=2tcm

          1SPBQ=BP×BQ,即,解得:t=14.(t=4秒不合題意,舍去)

          故:1秒后,PBQ的面積等于4cm2

          2PQ=5,則PQ2=25=BP2+BQ2,即25=5t2+2t2,t=0(舍)或2

          2秒后,PQ的長(zhǎng)度為5cm

          3)令SPQB=7,即:BP×=7,整理得:t25t+7=0

          由于b24ac=2528=30,則方程沒(méi)有實(shí)數(shù)根.

          所以,在(1)中,PQB的面積不等于7cm2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】四邊形ABCD中,AB=BC,B=∠C=90°,PBC邊上一點(diǎn),APPD,EAB邊上一點(diǎn),BPE=∠BAP

          1 如圖1,若AE=PE,直接寫(xiě)出=______;

          2 如圖2,求證:AP=PDPE;

          3 如圖3,當(dāng)AE=BP時(shí),連BD,則=______,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和B(3,0),與y軸交于點(diǎn)C,點(diǎn)D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長(zhǎng)至E,使得CE=CD,連結(jié)BE,BC.

          (1)求拋物線(xiàn)的解析式;

          (2)用含m的代數(shù)式表示點(diǎn)E的坐標(biāo),并求出點(diǎn)E縱坐標(biāo)的范圍;

          (3)求BCE的面積最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

          (1)x-1290;

          (2)3x+5=x+52;

          (3)x26x550

          (4)2x(x3)10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在正方形ABCD中,P是對(duì)角線(xiàn)BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線(xiàn)上,且PA=PE,PE交CD于F.

          (1)證明:PC=PE;

          (2)求CPE的度數(shù);

          (3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)ABC=120°時(shí),連接CE,試探究線(xiàn)段AP與線(xiàn)段CE的數(shù)量關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,將平行四邊形ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F

          1)求證:AC=BE;

          2)若∠AFC=2D,連接AC,BE.求證:四邊形ABEC是矩形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】點(diǎn)P是正方形ABCDAB上一點(diǎn)(不與A,B重合),連接PD并將線(xiàn)段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線(xiàn)段PE,連接BE,則∠CBE等于

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn)l:y=ax2+bx+c(a,b,c均不為0)的頂點(diǎn)為M,與y軸的交點(diǎn)為N,我們稱(chēng)以N為頂點(diǎn),對(duì)稱(chēng)軸是y軸且過(guò)點(diǎn)M的拋物線(xiàn)為拋物線(xiàn)l的衍生拋物線(xiàn),直線(xiàn)MN為拋物線(xiàn)l的衍生直線(xiàn).

          (1)如圖,拋物線(xiàn)y=x2﹣2x﹣3的衍生拋物線(xiàn)的解析式是   ,衍生直線(xiàn)的解析式是   ;

          (2)若一條拋物線(xiàn)的衍生拋物線(xiàn)和衍生直線(xiàn)分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線(xiàn)的解析式;

          (3)如圖,設(shè)(1)中的拋物線(xiàn)y=x2﹣2x﹣3的頂點(diǎn)為M,與y軸交點(diǎn)為N,將它的衍生直線(xiàn)MN先繞點(diǎn)N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個(gè)單位得直線(xiàn)n,P是直線(xiàn)n上的動(dòng)點(diǎn),是否存在點(diǎn)P,使△POM為直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線(xiàn)段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段AE,連接CD,BE.

          (1)求證:∠AEB=∠ADC;

          (2)連接DE,若ADC=105°,求BED的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案