日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拓展與探索:
          如圖,在正△ABC中,點E在AC上,點D在BC的延長線上.
          作業(yè)寶
          (1)如圖(1),AE=EC=CD,求證:BE=ED;
          (2)若E為AC上異于A、C的任一點,
          ①當AE=CD時,如圖(2),(1)中結(jié)論是否仍然成立?為什么?
          ②當EC=CD時呢?
          (3)若E為AC延長線上一點,且AE=CD,試探索BE與ED間的數(shù)量關(guān)系,并證明你的結(jié)論.

          解:(1)∵△ABC是等邊三角形,AE=CE,
          ∴BE平分∠ABC,
          ∴∠EBC=∠ABC=30°,
          又∵∠ACB=60°,
          ∴∠ECD=120°,
          又∵CE=CD,
          ∴∠D=∠CED=30°,
          ∴∠EBC=∠D=30°,
          ∴BE=ED(等角對等邊);
          (2)
          ①過點E作EF∥BC,交AB于F,
          ∵△ABC是等邊三角形,AE=CD,
          ∴△AEF是等邊三角形,AF=AE=EF=CD,
          ∴∠BFE=∠ECD=120°,BF=EC,
          在△EFB和△DCE中

          ∴△EFB≌△DCE(SAS),
          ∴BE=ED;
          ②∵EC=CD,
          ∴∠D=30°,
          由(1)可知只有E為中點時,∠EBC=30°,
          ∴當E為AC上異于A、C的任一點,∠EBC>30°或<30°,
          ∴BE<ED或BE>ED(大角對大邊)
          即當EC=CD時,(1)中的結(jié)論不成立;
          (3)
          結(jié)論:BE=ED.
          證明:過點E作EF∥AB,交CD于F,可得△CEF是等邊三角形,
          ∴CF=CE=EF,
          又∵AE=CD,
          ∴AE-CE=CD-CF,
          即AC=FD,
          又∵AC=BC,
          ∴BC=FD,
          在△BCE和△DFE中,

          ∴△BCE≌△DFE(SAS),
          ∴BE=ED.
          分析:(1)由等腰三角形的三線合一的性質(zhì)可得∠EBC=30°,在△ECD中,易得∠D=30°,∴∠EBC=∠D,∴BE=ED;(2)①過點E作EF∥BC,交AB于F,可證明△EFB≌△DCE(SAS),∴BE=ED;②如果EC=CD,則∠D=30°,而只有E為中點時,∠EBC=30°,當E為AC上異于A、C的任一點,∠EBC>30°或<30°,大角對大邊可得BE<ED或BE>ED;(3)過點E作EF∥AB,交CD于F,可得△CEF是等邊三角形,∴CF=CE=EF,又AE=CD,∴AC=FD,即BC=FD,∴△BCE≌△DFE(SAS),∴BE=ED.
          點評:本題考查了等邊三角形的性質(zhì),以及全等三角形的判定與性質(zhì),正確證明三角形全等的關(guān)鍵是作輔助線.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          拓展探索.
          如圖,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的內(nèi)切圓,點P從點B開始沿BC邊向C以1cm/s的速度移動,點Q從C點開始沿CA邊向點A以2cm/s的速度移動.
          (1)求⊙O的半徑;
          (2)若P、Q分別從B、C同時出發(fā),當Q移動到A時,P點與⊙O是什么位置關(guān)系?
          (3)若P、Q分別從B、C同時出發(fā),當Q移動到A時,移動停止,則經(jīng)過幾秒,△PCQ的面積等于5cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【問題】在正方形網(wǎng)格中,如圖(一),△OAB的頂點分別為O(0,0),A(1,2),B(2,-1).
          (1)以點O(0,0)為位似中心,按比例尺3:1在位似中心的同側(cè)將△OAB放大為△OA′B′,放大后點A、B的對應(yīng)點分別為A′、B′.畫出△OA′B′,并寫出點A'、B'的坐標:A′(
          3
          3
          ,
          6
          6
          ),B′(
          6
          6
          ,
          -3
          -3
          );
          (2)在(1)中,若點C(a,b)為線段AB上任一點,寫出變化后點C的對應(yīng)點C′的坐標(
          3a
          3a
          3b
          3b
          );
          【拓展】在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點P,它的對應(yīng)點P'在線段OP或其延長線上;接著將所得多邊形以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度θ,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
          【探索】如圖(二),完成下列問題:
          (3)填空:如圖1,將△ABC以點A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn)60°,得到△ADE,這個旋轉(zhuǎn)相似變換記為A(
          2
          2
          ,
          60°
          60°
          );
          (4)如圖2,△ABC是邊長為3cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
          43
          ,90°)
          ,得到△ADE,求線段BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          拓展與探索:
          如圖,在正△ABC中,點E在AC上,點D在BC的延長線上.

          (1)如圖(1),AE=EC=CD,求證:BE=ED;
          (2)若E為AC上異于A、C的任一點,
          ①當AE=CD時,如圖(2),(1)中結(jié)論是否仍然成立?為什么?
          ②當EC=CD時呢?
          (3)若E為AC延長線上一點,且AE=CD,試探索BE與ED間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          作業(yè)寶拓展探索.
          如圖,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的內(nèi)切圓,點P從點B開始沿BC邊向C以1cm/s的速度移動,點Q從C點開始沿CA邊向點A以2cm/s的速度移動.
          (1)求⊙O的半徑;
          (2)若P、Q分別從B、C同時出發(fā),當Q移動到A時,P點與⊙O是什么位置關(guān)系?
          (3)若P、Q分別從B、C同時出發(fā),當Q移動到A時,移動停止,則經(jīng)過幾秒,△PCQ的面積等于5cm2?

          查看答案和解析>>

          同步練習(xí)冊答案