日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將△ABC的邊AB繞點A順時針旋轉α得到AB,邊AC繞點A逆時針旋轉β得到AC′,αβ=180°.連接BC,作△ABC的中線AD

          (初步感知)

          (1)如圖,當∠BAC=90°,BC=4時,AD的長為______;

          (探索證明)

          (2)如圖②,△ABC為任意三角形時,猜想ADBC的數(shù)量關系,并證明;

          (應用延伸)

          (3)如圖,已知等腰△ACB,AC=BC=m,延長ACD,延長CBE,使CD=CE=n,將△CEDC順時針旋轉一周得到△CED,連接BE′、AD,若∠CBE′=90°,求AD的長度(用含m、n的代數(shù)式表示)

          【答案】(1)2;(2)(2)AD=BC,理由見解析;(3)AD′=.

          【解析】1)首先證明BAC≌△B′AC′,根據(jù)直角三角形斜邊中線定理即可解決問題;

          (2)結論:AD=BC.如圖,延長ADE,使得DE=AD,連接B′E,C′E,首先證明四邊形AC′EB′是平行四邊形,再證明BAC≌△AB′E,即可解決問題;

          (3)分情況進行討論即可得.

          1)∵∠BAC=90°,BAC+B′AC′=180°,

          ∴∠B′AC′=BAC=90°,

          AB=AB′,AC=AC′,

          ∴△BAC≌△B′AC′,

          BC=B′C′,

          B′D=DC′,

          AD=B′C′=BC==2,

          故答案為:2;

          (2)AD=BC,理由如下

          如圖,延長AD至點E,使得DE=AD,

          B′D=C′D,∴四邊形AC′EB′為平行四邊形,

          B′EAC′,B′E=AC′=AC,∴∠AB′E+B′AC′=180°,

          α+β=180°,∴∠BAC+B′AC′=180°,∴∠AB′E=BAC,

          AB′=AB,AB′E≌△BAC,AE=BC,

          AD=AE=BC;

          (3)情況一:如圖,過點CBCE′的中線CF,

          RtBCE′中,由勾股定理

          得:;

          BF=BE′=,

          RtBCF中,由勾股定理得:CF===,

          由(2)可知:AD′=;

          情況二:如圖,作CBE′的中線CF并延長到G,使FG=CF,連接BG、E′G,

          BF=E′F,CF=GF,∴四邊形BCE′G為平行四邊形,

          BC=GE′,BCGE′,BC=AC,AC=GE′,

          由旋轉可知∠1=BCE′,∵∠1+ACD′=180°,GE′C+BCE′=180°,∴∠ACD′=GE′C,

          CD′=E′C,ACD′≌△GE′C,AD′=GC

          由情況一可知:BE′=,AD′=

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】按下面的程序計算,當輸入x=100時,輸出結果為501;當輸入x=20時,輸出結果為506;如果開始輸入的值x為正數(shù),最后輸出的結果為656,那么滿足條件的x的值最多有( 。

          A. 5 B. 4 C. 3 D. 2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】實踐操作:在矩形ABCD中,AB4,AD3,現(xiàn)將紙片折疊,點D的對應點記為點P,折痕為EF(點E、F是折痕與矩形的邊的交點),再將紙片還原.

          初步思考:

          1)若點P落在矩形ABCD的邊AB上(如圖①)

          ①當點P與點A重合時,∠DEF   °;當點E與點A重合時,∠DEF   °;

          ②當點EAB上,點FDC上時(如圖②),

          求證:四邊形DEPF為菱形,并直接寫出當AP3.5時的菱形EPFD的邊長.

          深入探究

          2)若點P落在矩形ABCD的內部(如圖③),且點EF分別在AD、DC邊上,請直接寫出AP的最小值   

          拓展延伸

          3)若點F與點C重合,點EAD上,線段BA與線段FP交于點M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,連結DE并延長,與BC的延長線交于點F.
          (1)求證:BD=BF;
          (2)若BC=6,AD=4,求sinA的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,從一艘船的點A處觀測海岸上高為41m的燈塔BC(觀測點A與燈塔底部C在一個水平面上),測得燈塔頂部B的仰角為35°,則觀測點A到燈塔BC的距離為 . (精確到1m)
          【參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,Rt△ABC中,∠ACB=90°,CA=CB=2,CD⊥ABD,點P是線段CD上的一個動點,以點P為直角頂點向下作等腰直角△PBE,

          連接DE ,則DE的最小值為__________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為響應學雷鋒、樹新風、做文明中學生號召,某校開展了志愿者服務活動,活動項目有戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發(fā)現(xiàn),被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

          (1)被隨機抽取的學生共有多少名?

          (2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;

          (3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形ABCD中,EAD中點,將ABE沿直線BE折疊后得到GBE,延長BGCDF,若AB=6,BC=,CF的長為_______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形中,,在邊上,且,將沿對折至,延長交邊于點,連接、.則下列結論:①;;;.其中正確的是( )

          A. ①② B. ①②③ C. ①②④ D. ①②③④

          查看答案和解析>>

          同步練習冊答案