日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直徑為10⊙O經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于AB兩點(diǎn),線段OA、OBOAOB)的長分別是方程x2+kx+48=0的兩根.

          1)求線段OA、OB的長;

          2)已知點(diǎn)C在劣弧OA上,連結(jié)BCOAD,當(dāng)OC2=CD·CB時,求C點(diǎn)的坐標(biāo);

          3)在⊙O上是否存在點(diǎn)P,使SPOD=SABD.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          【答案】1OA=8,OB=6;(2C4,-2);(3)不存在,理由見解析.

          【解析】

          1)根據(jù)根與系數(shù)的關(guān)系寫出OA+OBOAOB的值.連接AB,根據(jù)90°的圓周角所對的弦是直徑,再結(jié)合勾股定理列方程求解.

          2)若OC2=CDCB,則三角形OCB相似于三角形DCO,則∠COD=∠CBO.又∠COD=∠CBA,則∠CBO=∠CBA,所以點(diǎn)C是弧OA的中點(diǎn).連接O′C,根據(jù)垂徑定理的推論,得O′E⊥OA.再進(jìn)一步根據(jù)垂徑定理和勾股定理進(jìn)行計算即可.

          3)首先求得直線BC的解析式,求得D的坐標(biāo),根據(jù)面積相等即可求得P的縱坐標(biāo),根據(jù)圓的直徑即可作出判斷.

          解:(1)連接AB,∵∠BOA=90°,

          ∴AB為直徑,根與系數(shù)關(guān)系得OA+OB=-kOAOB=48;

          根據(jù)勾股定理,得OA2+OB2=100

          即(OA+OB2-2OAOB=100,

          解得k2=196,∴k=±14(正值舍去).

          則有方程x2-14x+48=0,x=68

          OAOB,

          ∴OA=8,OB=6

          2)若OC2=CD×CB,則△OCB∽△DCO,

          ∴∠COD=∠CBO

          ∵∠COD=∠CBA,

          ∴∠CBO=∠CBA

          所以點(diǎn)C是弧OA的中點(diǎn).

          連接O′COA于點(diǎn)D,根據(jù)垂徑定理的推論,得O′C⊥OA

          根據(jù)垂徑定理,得OD=4

          根據(jù)勾股定理,得O′D=3,

          ∴CD=2,即C4,-2).

          3)設(shè)直線BC的解析式是y=kx+b,把B0,6,C4,-2)代入

          解得:K=-2,b=6

          則直線BC的解析式是y=-2x+6,

          y=0,解得:x=3,

          OD=3AD=8-3=5

          ∴SABD=×5×6=15

          SABD=SOBD,Px軸的距離是h

          ×3h=15,解得:h=10

          ⊙O′的直徑是10,因而P不能在⊙O′上,

          P不存在.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司2017年初剛成立時投資1000萬元購買新生產(chǎn)線生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本40元.按規(guī)定,該產(chǎn)品售價不得低于60元/件且不超過160元/件,且每年售價確定以后不再變化,該產(chǎn)品的年銷售量(萬件)與產(chǎn)品售價元)之間的函數(shù)關(guān)系如圖所示.

          (1)求之間的函數(shù)關(guān)系式,并寫出的取值范圍;

          (2)求2017年該公司的最大利潤?

          (3)在2017年取得最大利潤的前提下,2018年公司將重新確定產(chǎn)品售價,能否使兩年共盈利達(dá)980萬元.若能,求出2018年產(chǎn)品的售價;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,ABAC,∠ABCα,過點(diǎn)A作直線MN,使MNBC,點(diǎn)D在直線MN上,作射線BD,將射線BD繞點(diǎn)B順時針旋轉(zhuǎn)角α后交直線AC于點(diǎn)E

          1)如圖①,當(dāng)α60°,且點(diǎn)D在射線AN上時,直接寫出線段AB,AD,AE的數(shù)量關(guān)系.

          2)如圖②,當(dāng)α45°,且點(diǎn)D在射線AN上時,直寫出線段AB、AD、AE的數(shù)量關(guān)系,并說明理由.

          3)當(dāng)α30°時,若點(diǎn)D在射線AM上,∠ABE15°,AD1,請直接寫出線段AE的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中國的數(shù)字支付正在引領(lǐng)未來世界的支付方式變革,中國消費(fèi)者的移動支付比美國的移動支付要多出11倍,所以當(dāng)我們展望數(shù)字錢包的未來時,中國是一個自然的起點(diǎn).某校數(shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

          1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

          2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,將各種支付方式調(diào)查人數(shù)組成一組數(shù)據(jù),求這組數(shù)據(jù)的中位數(shù)   

          3)在一次購物中,小明和小亮都想從微信支付寶、銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求兩人選同種支付方式的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某店在開學(xué)初用880元購進(jìn)若干個學(xué)生專用科學(xué)計算器,按每個50元出售,很快就銷售一空,據(jù)了解學(xué)生還急需3倍這種計算器,于是又用2580元購進(jìn)所需計算器,由于量大每個進(jìn)價比上次優(yōu)惠1元,該店仍按每個50元銷售,最后剩下4個按九折賣出.這筆生意該店共盈利( )元.

          A508 B520 C528 D560

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E是正方形內(nèi)都一點(diǎn),連接BECE,且∠ABE=∠BCE,點(diǎn)FAB邊上一動點(diǎn),連接FD,FE,則FD+FE的長度最小值為__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】提出問題:(1)如圖①,正方形ABCD中,點(diǎn)E,點(diǎn)F分別在邊AD和邊CD上,若正方形邊長為4DE+DF4,則四邊形BEDF的面積為 

          探究問題:(2)如圖②,四邊形ABCDABBC4,∠ABC60°,∠ADC120°,點(diǎn)E、F分別是邊AD和邊DC上的點(diǎn),連接BE,BF,若ED+DF3,BD2,求四邊形EBFD的面積;

          解決問題:(3)某地質(zhì)勘探隊(duì)為了進(jìn)行資源助測,建立了如圖③所示的一個四邊形野外勘查基地,基地相鄰兩側(cè)邊界DA、AB長度均為4km,∠DAB90°,由于勘測需要及技術(shù)原因,主勘測儀C與基地邊緣D、B夾角為90°(∠DCB90°),在邊界CD和邊界BC上分別有兩個輔助勘測儀EF,輔助勘測儀EF與主勘測儀C的距離之和始終等于4kmCE+CF4).為了達(dá)到更好監(jiān)測效果,需保證勘測區(qū)域(四邊形EAFC)面積盡可能大.請問勘測區(qū)域面積有沒有最大值,如果有求出最大值,如果沒有,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ADBC,∠B90°AB8,tanCAD,CACD,EF分別是AD、AC上的動點(diǎn)(點(diǎn)EA、D不重合),且∠FEC=∠ACB

          1)求CD的長;

          2)若AF2,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對稱軸交x軸于點(diǎn)Q.

          (1)求拋物線對應(yīng)的二次函數(shù)的表達(dá)式;

          (2)點(diǎn)P是拋物線的對稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);

          (3)在拋物線的對稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案