日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 幾何模型:
          條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).
          問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最。
          方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A,連接A′B交l于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).
          模型應(yīng)用:
          (1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于P,則PB+PE的最小值是
          5
          5
          ;
          (2)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;
          (3)如圖3,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點(diǎn)E,CD⊥MN于點(diǎn)F,P為EF上的任意一點(diǎn),求PA+PC的最小值.
          分析:(1)由所給的例子可知,PB+PE的最小值是DE的長(zhǎng),在Rt△ADE中,利用勾股定理即可得出DE的長(zhǎng);
          (2)作A關(guān)于OB的對(duì)稱點(diǎn)A′,連接A′C,交OB于P,PA+PC的最小值即為A′C的長(zhǎng),求出A′C的長(zhǎng)即可.
          (3)A、B兩點(diǎn)關(guān)于MN對(duì)稱,因而PA+PC=PB+PC,即當(dāng)B、C、P在一條直線上時(shí),PA+PC的最小,即BC的值就是PA+PC的最小值.
          解答:解:(1)由所給的例子可知,PB+PE的最小值是DE的長(zhǎng),
          ∵正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),
          ∴AE=1,
          在Rt△ADE中,
          DE=
          AD2+AE2
          =
          22+12
          =
          5
          ,
          則PB+PE的最小值是:
          5
          ;

          (2)如圖2所示:作A關(guān)于OB的對(duì)稱點(diǎn)A′,連接A′C,交OB于P,PA+PC的最小值即為A′C的長(zhǎng),
          ∵∠AOC=60°
          ∴∠A′OC=120°
          作OD⊥A′C于D,則∠A′OD=60°
          ∵OA′=OA=2
          ∴A′D=
          3

          ∴A′C=2
          3
          ;
          故PA+PC的最小值為2
          3


          (3)如圖3,連接OA,OB,OC,作CH垂直于AB于H.
          根據(jù)垂徑定理,得到BE=
          1
          2
          AB=4,CF=
          1
          2
          CD=3,
          ∴OE=
          OB2-BE2
          =
          52-42
          =3,
          OF=
          OC2-CF2
          =
          52-32
          =4,
          ∴CH=OE+OF=3+4=7,
          BH=BE+EH=BE+CF=4+3=7,
          在直角△BCH中根據(jù)勾股定理得到BC=7
          2

          則PA+PC的最小值為7
          2

          故答案為:
          5
          點(diǎn)評(píng):本題考查的是軸對(duì)稱--最短路線的問(wèn)題,涉及到正方形、圓、等腰直角三角形的有關(guān)知識(shí),熟知兩點(diǎn)之間線段最短的知識(shí)是解答此題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)幾何模型:條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).
          問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小.
          方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,
          由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn).
          模型應(yīng)用:
          (1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).則PB+PE的最小值是
           
          ;
          (2)如圖2,∠AOB=45°,P是∠AOB內(nèi)一定點(diǎn),PO=10,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值.(要求畫出示意圖,寫出解題過(guò)程)
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀理解題:
          【幾何模型】
          條件:如圖1,A、B是直線l同旁的兩個(gè)定點(diǎn).
          問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小.
          方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,
          由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn).

          【模型應(yīng)用】
          如圖2所示,兩個(gè)村子A、B在一條河CD的同側(cè),A、B兩村到河邊的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送水,鋪設(shè)水管的工程費(fèi)用為每千米15000元,請(qǐng)你在CD上選擇水廠位置,使鋪設(shè)水管的費(fèi)用最省,并求出最省的鋪設(shè)水管的費(fèi)用W.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          幾何模型:
          條件:如圖1,A、B是直線l同旁的兩個(gè)定點(diǎn).

          問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最。
          方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).
          模型應(yīng)用:
          (1)如圖2,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于P,則PB+PE的最小值是
          5
          5

          (2)如圖3,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值是
          2
          3
          2
          3
          ;
          (3)如圖4,∠AOB=45°,P是∠AOB內(nèi)一點(diǎn),PO=5,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:期中題 題型:解答題

          閱讀理解題:【幾何模型】
          條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn),問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小。
          方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn)。
          【模型應(yīng)用】
          (1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).求出PB+PE的最小值。(畫出示意圖,并解答)
          (2)如圖2,∠AOB=45°,P是∠AOB內(nèi)一定點(diǎn),PO=10,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值。(要求畫出示意圖,寫出解題過(guò)程)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案