日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系中,⊙Ax軸相交于C(20)D(8,0)兩點,與y軸相切于點B(0,4)

          (1)求經(jīng)過B、CD三點的拋物線對應(yīng)的函數(shù)表達式;

          (2)設(shè)拋物線的頂點為E,證明:直線CE⊙A相切.

          【答案】(1)y=x2x+4;(2)詳見解析.

          【解析】

          1)把B0,4),C(﹣20),D(﹣8,0)代入二次函數(shù)的解析式即可得到結(jié)果;

          2)由yx2x+4x+52,得到頂點坐標E(﹣5,),求得直線CE的函數(shù)解析式y,在y中,令x=0,y,得到G0),如圖1,連接AB,AC,AG,得BG=OBOG=4CG,得到BG=CG,AB=AC,證得△ABG≌△ACG,得到∠ACG=ABG,由于⊙Ay軸相切于點B04),于是得到∠ABG=90°,即可求得結(jié)論.

          1)設(shè)拋物線的解析式為:y=ax2+bx+c,把B0,4),C(﹣2,0),D(﹣8,0)代入得:,解得:,∴經(jīng)過B,C,D三點的拋物線的函數(shù)表達式為:yx2x+4;

          2)∵yx2x+4x+52,∴E(﹣5),設(shè)直線CE的函數(shù)解析式為y=mx+n,直線CEy軸交于點G,則,解得:,∴y,在y中,令x=0y,∴G0),如圖1,連接AB,AC,AG,則BG=OBOG=4,CG,∴BG=CG,AB=AC.在△ABG與△ACG中,∵,∴△ABG≌△ACG,∴∠ACG=ABG

          ∵⊙Ay軸相切于點B0,4),∴∠ABG=90°,∴∠ACG=ABG=90°

          ∵點C在⊙A上,∴直線CE與⊙A相切.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交ABF,連接BE

          (1)求證:AC平分∠DAB;

          (2)求證:PCPF;

          (3)tanABC,AB14,求線段PC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標.

          (2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2

          (3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙ORt△ABC的外接圓,∠ABC90°,點P是圓外一點,PA⊙O于點A,且PAPB.

          (1)求證:PB⊙O的切線;

          (2)已知PA,∠ACB60°,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結(jié)AD并延長,與BC相交于點E。

          (1)若BC=,CD=1,求⊙O的半徑;

          (2)取BE的中點F,連結(jié)DF,求證:DF是⊙O的切線。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,RtABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點D,E,過劣弧DE(不包括端點D,E)上任一點P作⊙O的切線MN,與AB,BC分別交于點MN,若⊙O的半徑為r,則RtMBN的周長為(  )

          A. r B. r C. 2r D. r

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】選擇適當?shù)姆椒ń庀铝蟹匠蹋?/span>

          (1)(x1)22x(x1)0;

          (2)x26x60;

          (3)6 000(1x)24 860;

          (4)(10x)(50x)800;

          (5)(2x1)2x(3x2)7.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線x軸、y軸分別相交于AB兩點.

          (1)求出A,B兩點的坐標;

          (2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;

          (3)設(shè)(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,AB=2∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

          1)求證:四邊形AMDN是平行四邊形;

          2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

          查看答案和解析>>

          同步練習(xí)冊答案