日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)a0時(shí):①拋物線yax2bxc開(kāi)口向________;②對(duì)稱軸是直線________,頂點(diǎn)坐標(biāo)為________;③在對(duì)稱軸的左側(cè)(________)yx的增大而________,在對(duì)稱軸的右側(cè)(________)yx的增大而________;④拋物線與對(duì)稱軸的交點(diǎn)是拋物線的最低點(diǎn),當(dāng)x________時(shí),y最。________

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知平面直角坐標(biāo)系xOy中,點(diǎn)A(m,6),B(n,1)為兩動(dòng)點(diǎn),其中0<m<3,連精英家教網(wǎng)接OA,OB,OA⊥OB.
          (1)求證:mn=-6;
          (2)當(dāng)S△AOB=10時(shí),拋物線經(jīng)過(guò)A,B兩點(diǎn)且以y軸為對(duì)稱軸,求拋物線對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
          (3)在(2)的條件下,設(shè)直線AB交y軸于點(diǎn)F,過(guò)點(diǎn)F作直線l交拋物線于P,Q兩點(diǎn),問(wèn)是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知平面直角坐標(biāo)系xOy中,點(diǎn)A(2,m),B(-3,n)為兩動(dòng)點(diǎn),其中m>1,連接O精英家教網(wǎng)A,OB,OA⊥OB,作BC⊥x軸于C點(diǎn),AD⊥x軸于D點(diǎn).
          (1)求證:mn=6;
          (2)當(dāng)S△AOB=10時(shí),拋物線經(jīng)過(guò)A,B兩點(diǎn)且以y軸為對(duì)稱軸,求拋物線對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
          (3)在(2)的條件下,設(shè)直線AB交y軸于點(diǎn)F,過(guò)點(diǎn)F作直線l交拋物線于P,Q兩點(diǎn),問(wèn)是否存在直線l,使S△POF:S△QOF=1:2?若存在,求出直線l對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,是某市一條河上一座古拱撟的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線拱橋處于正常水位時(shí)水面寬AB為26m,當(dāng)水位上漲1m時(shí),拋物線拱橋的水面寬CD為24m.現(xiàn)以水面AB所在直線為x軸,拋物線的對(duì)稱軸為y軸建立直角坐標(biāo)系.
          (1)求出拋物線的解析式;
          (2)經(jīng)過(guò)測(cè)算,水面離拱橋頂端1.5m時(shí)為警戒水位.某次洪水到來(lái)時(shí),小明用儀器測(cè)得水面寬為10m,請(qǐng)你幫助小明算一算,此時(shí)水面是否超過(guò)警戒水位?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          拋物線y=x2+2kx+1,當(dāng)k=
          ±1
          ±1
          時(shí),拋物線與x軸相交于一點(diǎn).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知直線y=ax+c與拋物線y=ax2+bx+c(a≠0,b≠0)分別相交于A(0,C),B(1-b,m)兩點(diǎn),拋物線y=ax2+bx+c與x軸交于C,D兩點(diǎn),頂點(diǎn)為P.
          (1)求a的值.
          (2)如果CD=2,當(dāng)-1≤x≤1時(shí),拋物線y=ax2+bx+c的最大值與最小值的差為4,求點(diǎn)的B坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案