日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連接DE,設(shè)M為DE的中點.
          (1)說明:MB=MC;
          (2)設(shè)∠BAD=∠CAE,固定△ABD,讓Rt△ACE繞頂點A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB=MC是否還能成立?并證明其結(jié)論.
          精英家教網(wǎng)
          分析:(1)在AD上取點P,MP∥CE∥BD,再根據(jù)平行線分線段成比例定理可得P是BC的中點,再由線段垂直平分線上的點到線段兩端的距離相等即可求解;
          (2)取AD、AE的中點F、G,連接BF、MF、MG、CG,由M是BE的中點可知,線段MG、MF都是△ADE的中位線,根據(jù)三角形的中位線定理及平行四邊形的判定定理可判斷MFAG是平行四邊形,可用AD.AE表示出MG.MF的長,再由直角三角形的性質(zhì)可求出BF的長,再根據(jù)∠BAD=∠CAE通過等量代換可得∠BFM=∠MGC,可求出△BFM≌△MGC,由三角形全等即可得出答案.
          解答:精英家教網(wǎng)證明:(1)作點M作MP⊥AB于點P,
          ∵∠ABD=∠ACE=90°.
          ∴MP∥CE∥BD.
          ∵M為DE的中點,
          ∴CP=BP,
          ∴MP是BC的中垂線,
          ∴MB=MC;

          (2)MB=MC成立.
          取AD、AE的中點F、G,連接BF、MF、MG、CG顯然線段MG、MF都是△ADE的中位線,
          精英家教網(wǎng)∴四邊形MFAG是平行四邊形,MG=
          1
          2
          AD,MF=
          1
          2
          AE,
          ∴∠MFA=∠AGM,
          又∵∠DBA=∠ACE=90°,
          ∴Rt△斜邊中線BF=
          1
          2
          AD=MG,
          CG=
          1
          2
          AE=MF,
          ∵∠DAB=∠CAE,
          ∴∠BDA=∠CEA,
          ∴∠BFA=2∠BDA=2∠CEA=∠CGA,
          ∴∠BFM=∠BFA-∠MFA=∠CGA-∠AGM=∠MGC,
          ∴△BFM≌△MGC,
          ∴MB=MC.
          點評:此題比較復(fù)雜,(1)主要是利用線段垂直平分線的性質(zhì);在解(2)時要作出輔助線,構(gòu)造出平行其性質(zhì)求解四邊形及直角三角形的中線是解答此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•哈爾濱)已知:△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E,F(xiàn)分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF,AE,AE交BD于點G.
          (1)如圖1,求證:∠EAF=∠ABD;
          (2)如圖2,當(dāng)AB=AD時,M是線段AG上一點,連接BM,ED,MF,MF的延長線交ED于點N,∠MBF=
          1
          2
          ∠BAF,AF=
          2
          3
          AD,試探究FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
          (1)如圖1,試說明:△ABD≌△AEC;
          (2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
          ①試求:∠EOB的度數(shù);
          ②將△AEC繞點A逆時針旋轉(zhuǎn)α度(0°<α<180°),問當(dāng)α為多少度時,直線CE分別與△ABD的三邊所在的直線垂直?(請直接寫出答案).
          (3)如圖2將△AEC繞點A順時針旋轉(zhuǎn)后得到△ABD,并使點D,E,A三點在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1所示,已知在△ABD和△AEC中,,,
          【小題1】如圖1,試說明:;
          【小題2】如圖1,若,,,
          ①試求:的度數(shù)
          ②將繞點A逆時針旋轉(zhuǎn)度(),問當(dāng)為多少度時,直線CE分別與的三邊所在的直線垂直?(請直接寫出答案)。
          【小題3】如圖2將繞點A逆時針旋轉(zhuǎn)后得到,并使點D,E,A三點在同一條直線上,若,連接CD,若的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江哈爾濱卷)數(shù)學(xué)(帶解析) 題型:解答題

          已知:△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點G.

          (1)如圖l,求證:∠EAF=∠ABD;
          (2)如圖2,當(dāng)AB=AD時,M是線段AG上一點,連接BM、ED、MF,MF的延長線交ED于點N,∠MBF= ∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案