日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11、如圖,在銳角△ABC內(nèi)有一點P,直線AP,BP,CP分別交對邊于Q1,Q2,Q3,且∠PQ1C=∠PQ2A=∠PQ3B.
          試問:點P是否必為△ABC的垂心?如果是,請證明;如果不是,請舉反例說明.
          分析:首先假設(shè)∠AQ1C=∠AQ2B=∠BQ3C=α,顯然只要證明α=90°,即P是△ABC的垂心即可.因而根據(jù)若平面上四點連成四邊形的一個外角等于其內(nèi)對角,四點共圓.則P、Q1、C、Q2,P、Q2、A、Q3,P、Q3、B、Q1分別四點共圓.連接Q1Q2,根據(jù)圓內(nèi)接四邊形的對角和為180°,并且任何一個外角都等于它的內(nèi)對角;同弧所對的圓周角相等.則可得到∠CQ2Q1=∠CPQ1=∠CBQ3,即可確定Q2、A、B、Q1四點共圓.觀察圖形根據(jù)∠AQ2B與∠AQ1B是同弧所對的圓周角,∠AQ1C與∠AQ1B兩角互補.那么可求出∠AQ1C的度數(shù).問題得解.
          解答:
          證明:設(shè)∠AQ1C=∠AQ2B=∠BQ3C=α,
          ∵∠AQ1C是四邊形PQ3BQ1外角,∠AQ2B是四邊形PQ1CQ2的外角,∠BQ3C是四邊形PQ2AQ3的外角,
          ∴P、Q1、C、Q2,P、Q2、A、Q3,P、Q3、B、Q1分別四點共圓,
          如圖,連接Q1Q2,
          ∵∠CQ2Q1=∠CPQ1=∠CBQ3,
          ∴Q2、A、B、Q1四點共圓,
          于是∠AQ2B=∠AQ1B,即α=180°-α=α,
          ∴α=90°,
          ∴P是△ABC的垂心.
          點評:本題考查了三角形垂心與圓,四點共圓的判定與性質(zhì),是一道綜合性較強的題目.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點,且cosA=
          3
          3
          ,則S△ADE:S四邊形DBCE的值為( 。
          A、
          1
          2
          B、
          1
          3
          C、
          3
          2
          D、
          3
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個頂點為頂點作矩形,第三個頂點落在以這兩個頂點所確定的對邊上,這樣可以作三個面積相等的矩形,請問這三個矩形的周長大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長)答:
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
          (1)求證:∠EAF+∠EDF=180°;
          (2)已知P是射線DC上一個動點,當點P運動到PD=BD時,連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時,必要時可直接運用(1)的結(jié)論進行推理與解答]

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在銳角△ABC中,∠ABC的平分線交AC于點D,AB邊上的高CE交BD于點M,過點M作BC的垂線段MN,若EC=4,∠BCE=45°,則MN=
           
          (結(jié)果保留三位有效數(shù)字).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點.則BM+MN的最小值是
          2
          2
          2
          2

          查看答案和解析>>

          同步練習冊答案