【題目】如圖,已知在正方形ABCD中,點O是對角線AC的中點,過O點的射線OM、ON分別交AB、BC于點E、F,且∠EOF=90°,BO、EF交于點P,下列結(jié)論:
①圖形中全等的三角形只有三對; ②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BE+BF=OA;⑤AE2+BE2=2OPOB.其中正確的個數(shù)有( 。﹤.
A. 4B. 3C. 2D. 1
【答案】B
【解析】
由正方形的性質(zhì)和已知條件得出圖形中全等的三角形有四對,得出①不正確;由△AOE≌△BOF,得出對應(yīng)邊相等OE=OF,得出②正確;由△AOE≌△BOF,得出四邊形OEBF的面積=△ABO的面積=正方形ABCD的面積,③正確;由△BOE≌△COF,得出BE=CF,得出BE+BF=AB=OA,④錯誤;由△AOE≌△BOF,得出AE=BF,得出AE2+CF2=BE2+BF2=EF2=2OF2,再證明△OPF∽△OFB,得出對應(yīng)邊成比例OP:OF=OF:OB,得出OF2=OPOB,得出⑤正確.
解:①不正確;
圖形中全等的三角形有四對:△ABC≌△ADC,△AOB≌△COB,△AOE≌△BOF,△BOE≌△COF;理由如下:
∵四邊形ABCD是正方形,
∴AB=BC=CD=DA,∠BAD=∠ABC=∠BCD=∠D=90°,∠BAO=∠BCO=45°,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS);
∵點O為對角線AC的中點,
∴OA=OC,
在△AOB和△COB中,
,
∴△AOB≌△COB(SSS);
∵AB=CB,OA=OC,∠ABC=90°,
∴∠AOB=90°,∠OBC=45°,
又∵∠EOF=90°,
∴∠AOE=∠BOF,
在△AOE和△BOF中,
,
∴△AOE≌△BOF(ASA);
同理:△BOE≌△COF(ASA);
②正確;理由如下:
∵△AOE≌△BOF,
∴OE=OF,
∴△EOF是等腰直角三角形;
③正確.理由如下:
∵△AOE≌△BOF,
∴四邊形OEBF的面積=△ABO的面積=正方形ABCD的面積;
④不正確.理由如下:
∵△BOE≌△COF,
∴BE=CF,
∴BE+BF=CF+BF=BC=AB=OA;
⑤正確.理由如下:
∵△AOE≌△BOF,
∴AE=BF,
∴AE2+CF2=BE2+BF2=EF2=2OF2,
在△OPF與△OFB中,
∠OBF=∠OFP=45°,
∠POF=∠FOB,
∴△OPF∽△OFB,
∴OP:OF=OF:OB,
∴OF2=OPOB,
∴AE2+CF2=2OPOB.
正確結(jié)論的個數(shù)有3個;
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形
的對角線
與
交于點
,將正方形
沿直線
折疊,點
落在對角線
上的點
處,折痕
交
于點
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的例題及點撥,并解決問題:
例題:如圖①,在等邊中,
是
邊上一點(不含端點
),
是
的外角
的平分線上一點,且
.求證:
.
點撥:如圖②,作,
與
的延長線相交于點
,得等邊
,連接
.易證:
,可得
;又
,則
,可得
;由
,進一步可得
又因為
,所以
,即:
.
問題:如圖③,在正方形中,
是
邊上一點(不含端點
),
是正方形
的外角
的平分線上一點,且
.求證:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:①abc>0;②b<a+c;③當(dāng)x<0時,y隨x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正確的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象經(jīng)過A(0,﹣2),B(1,0)兩點,與反比例函數(shù)的圖象在第一象限內(nèi)的交點為M,若△OBM的面積為2.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)在x軸上是否存在點P,使AM⊥MP?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,點A、B、D、E在圓O上,弧AE=弧DE,連接BE交AE于F,∠BFC=45°,EF=2,BF=4.
(1)求AE的長;
(2)求證:BC是圓O的切線;
(3)求tan∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(1,5)和點B,與y軸相交于點C(0,6).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)現(xiàn)有一直線l與直線y=kx+b平行,且與反比例函數(shù)y=的圖象在第一象限有且只有一個交點,求直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“全民閱讀”活動,是中央宣傳部、中央文明辦和新聞出版總署貫徹落實關(guān)于建設(shè)學(xué)習(xí)型社會要求的一項重要舉措.讀書必須要講究方法,只有按照一定的方法去閱讀,才能取得事半功倍的效果.常用的閱讀方法有:A.圈點批注法;B.摘記法;C.反思法:D.撰寫讀后感法;E.其他方法.某縣某中學(xué)張老師為了解本校學(xué)生使用不同閱讀方法讀書的情況,隨機抽取部分本校中學(xué)生進行了調(diào)查,通過數(shù)據(jù)的收集、整理繪制成以下不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題:
中學(xué)生閱讀方法情況統(tǒng)計表
閱讀方法 | 頻數(shù) | |
A | 圈點批注法 | a |
B | 摘記法 | 20 |
C | 反思法 | b |
D | 撰寫讀后感法 | 16 |
E | 其他方法 | 4 |
(1)請你補全圖表中的a,b,c數(shù)據(jù):a= ,b= ,c= ;
(2)若該校共有中學(xué)生960名,估計該校使用“反思法”讀書的學(xué)生有 人;
(3)小明從以上抽樣調(diào)查所得結(jié)果估計全縣6000名中學(xué)生中有1200人采用“撰寫讀后感法”讀書,你同意小明的觀點嗎?請說明你的理由.
(4)該校決定從本次抽取的“其他方法”4名學(xué)生(記為甲,乙,丙,。┲校S機選擇2名成為學(xué)校閱讀宣講志愿者,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com