日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①,在梯形ABCD中,AB=BC=10 cm,CD=6 cm,∠C=∠D=90°,如圖②,動(dòng)點(diǎn)P、Q同時(shí)以每秒1cm的速度從點(diǎn)B出發(fā),點(diǎn)P沿BA、AD、DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止.
          (1)設(shè)P、Q同時(shí)從點(diǎn)B出發(fā)t秒時(shí),△PBQ的面積為S(cm2),求S(cm2)關(guān)于t(秒)的函數(shù)關(guān)系式;并寫(xiě)出自變量t的取值范圍;
          (2)當(dāng)t為何值時(shí),△PBQ的面積最大,最大面積是多少?

          【答案】分析:(1)本題要分類進(jìn)行討論:
          ①當(dāng)P在AB上運(yùn)動(dòng)時(shí),即0≤t≤10時(shí),可分別過(guò)P,A作BC的垂線,通過(guò)構(gòu)建的相似三角形求出BQ邊上的高,由此可根據(jù)三角形的面積公式得出S,t的函數(shù)關(guān)系式.
          ②當(dāng)P在AD上運(yùn)動(dòng)時(shí),即10≤t≤12時(shí),Q點(diǎn)已停止運(yùn)動(dòng),因此△BPQ的底邊BQ的長(zhǎng)不會(huì)變化,而B(niǎo)Q邊上的高為CD的長(zhǎng),也不變,因此此時(shí)△BPQ的面積為定值S=BC•CD.
          ③當(dāng)P在CD上運(yùn)動(dòng)時(shí),即12≤t≤18是,Q點(diǎn)停止運(yùn)動(dòng),BQ長(zhǎng)不變,BQ邊上的高為PC,PC的長(zhǎng)可用AB,AD,CD三邊的和減去P點(diǎn)運(yùn)動(dòng)的路程來(lái)求得.然后根據(jù)三角形的面積公式即可求出S,t的函數(shù)關(guān)系式.
          (2)根據(jù)(1)的分段函數(shù)即可求出不同的自變量的取值范圍內(nèi),S的最大值,然后比較即可得出S的最大值及對(duì)應(yīng)的t的值.
          解答:解:(1)過(guò)點(diǎn)A作AM⊥BC于M,則AM=CD=6,
          ∵在Rt△ABM中,AB=10,AM=6,
          ∴BM===8,
          ∴AD=MC=2,
          過(guò)點(diǎn)P作PN⊥BC于N,則△PNB∽△AMB
          =
          =
          ∴PN=t
          ⅰ當(dāng)點(diǎn)P在BA上運(yùn)動(dòng)時(shí)
          S=•BQ•NP=t•t=t2(0≤t≤10)
          ⅱ當(dāng)點(diǎn)P在AD上運(yùn)動(dòng)時(shí),BQ=BC=10,PN=DC=6
          S=•BQ•NP=×10×6=30(10≤t≤12)
          ⅲ當(dāng)點(diǎn)P在DC上運(yùn)動(dòng)時(shí)
          S=•BQ•CP=×10×(10+2+6-t)=-5t+90(12≤t≤18).

          (2)ⅰ當(dāng)0≤t≤10時(shí),S=t2,S隨t的增大而增大
          則當(dāng)t=10時(shí),△PBQ的面積最大,最大面積S=30
          ⅱ當(dāng)10≤t≤12時(shí),面積不變,S=30
          ⅲ當(dāng)12≤t≤18時(shí),S=-5t+90,S隨t的增大而減。
          則當(dāng)t=12時(shí),△PBQ的面積最大,最大面積S=30
          綜上所述,當(dāng)10≤t≤12時(shí),△PBQ的面積最大,最大面積為30cm2
          點(diǎn)評(píng):本題主要考查了直角梯形的性質(zhì)、相似三角形的應(yīng)用、二次函數(shù)的應(yīng)用等知識(shí).綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          24、如圖1,在梯形ABCD中AD∥BC,對(duì)角線AC,BD交于點(diǎn)P,則s△PAB=S△PDC,請(qǐng)你用梯形對(duì)角線的這一特殊性質(zhì),解決下面問(wèn)題.
          在圖2中,點(diǎn)E是△ABC中AB邊上的任意一點(diǎn),且AE≠BE,過(guò)點(diǎn)E畫(huà)一條直線,把△ABC分成面積相等的兩部分,保留作圖痕跡,并簡(jiǎn)要說(shuō)明你的方法.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
          2
          ,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
          精英家教網(wǎng)
          (1)求等腰梯形DEFG的面積;
          (2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
          探究1:在運(yùn)動(dòng)過(guò)程中,四邊形BDG′G能否是菱形?若能,請(qǐng)求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由;
          探究2:設(shè)在運(yùn)動(dòng)過(guò)程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          24、如圖,已知:AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
          等底等高的三角形面積相等

          規(guī)定;若一條直線l把一個(gè)圖形分成面積相等的兩個(gè)圖形,則稱這樣的直線l叫做這個(gè)圖形的等積直線.根據(jù)此定義,在圖1中易知直線為△ABC的等積直線.
          (1)如圖2,在矩形ABCD中,直線l經(jīng)過(guò)AD,BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該矩形的等積直線
          (填“是”或“否”).在圖2中再畫(huà)出一條該矩形的等積直線.(不必寫(xiě)作法)
          (2)如圖3,在梯形ABCD中,直線l經(jīng)過(guò)上下底AD、BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該梯形的等積直線
          (填“是”或“否”).
          (3)在圖3中,過(guò)M、N的中點(diǎn)O任作一條直線PQ分別交AD,BC于點(diǎn)P、Q,如圖4所示,猜想PQ是否為該梯形的等積直線?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
          (1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
          1
          2
          ∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.
          (2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=
          1
          2
          ∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出猜想,不需證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          (2013•樂(lè)山)閱讀下列材料:
          如圖1,在梯形ABCD中,AD∥BC,點(diǎn)M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
          AM
          MB
          =
          m
          n
          ,則有結(jié)論:MN=
          bm+an
          m+n

          請(qǐng)根據(jù)以上結(jié)論,解答下列問(wèn)題:
          如圖2,圖3,BE,CF是△ABC的兩條角平分線,過(guò)EF上一點(diǎn)P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點(diǎn)P1,交AB于點(diǎn)P2,交AC于點(diǎn)P3
          (1)若點(diǎn)P為線段EF的中點(diǎn).求證:PP1=PP2+PP3;
          (2)若點(diǎn)P為線段EF上的任意位置時(shí),試探究PP1,PP2,PP3的數(shù)量關(guān)系,并給出證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案