日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PB:PC=1:2.

          (1)求證:AC平分∠BAD;
          (2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
          (3)若AD=3,求△ABC的面積.

          【答案】
          (1)

          證明:連接OC,

          ∵PE是⊙O的切線,

          ∴OC⊥PE,

          ∵AE⊥PE,

          ∴OC∥AE,

          ∴∠DAC=∠OCA,

          ∵OA=OC,

          ∴∠OCA=∠OAC,

          ∴∠DAC=∠OAC,

          ∴AC平分∠BAD;


          (2)

          解:線段PB,AB之間的數(shù)量關(guān)系為:AB=3PB.

          理由:∵AB是⊙O的直徑,

          ∴∠ACB=90°,

          ∴∠BAC+∠ABC=90°,

          ∵OB=OC,

          ∴∠OCB=∠ABC,

          ∵∠PCB+∠OCB=90°,

          ∴∠PCB=∠PAC,

          ∵∠P是公共角,

          ∴△PCB∽△PAC,

          ∴PC2=PBPA,

          ∵PB:PC=1:2,

          ∴PC=2PB,

          ∴PA=4PB,

          ∴AB=3PB;


          (3)

          解:過點(diǎn)O作OH⊥AD于點(diǎn)H,則AH=AD=,四邊形OCEH是矩形,

          ∴OC=HE,

          ∴AE=+OC,

          ∵OC∥AE,

          ∴△PCO∽△PEA,

          ,

          ∵AB=3PB,AB=2OB,

          ∴OB=PB,

          =,

          ∴OC=

          ∴AB=5,

          ∵△PBC∽△PCA,

          ,

          ∴AC=2BC,

          在Rt△ABC中,AC2+BC2=AB2,

          ∴(2BC)2+BC2=52,

          ∴BC=,

          ∴AC=,

          ∴SABC=ACBC=5.


          【解析】(1)首先連接OC,由PE是⊙O的切線,AE和過點(diǎn)C的切線互相垂直,可證得OC∥AE,又由OA=OC,易證得∠DAC=∠OAC,即可得AC平分∠BAD;
          (2)由AB是⊙O的直徑,PE是切線,可證得∠PCB=∠PAC,即可證得△PCB∽△PAC,然后由相似三角形的對(duì)應(yīng)邊成比例與PB:PC=1:2,即可求得答案;
          (3)首先過點(diǎn)O作OH⊥AD于點(diǎn)H,則AH=AD=,四邊形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的對(duì)應(yīng)邊成比例,求得OC的長(zhǎng),再由△PBC∽△PCA,證得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2 , 可得(2BC)2+BC2=52 , 即可求得BC的長(zhǎng),繼而求得答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)P是線段AB上與點(diǎn)A不重合的一點(diǎn),且AP<PB.AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角α(0°<α≤90°)得到AP1 , BP繞點(diǎn)B順時(shí)針也旋轉(zhuǎn)角α得到BP2 , 連接PP1、PP2

          (1)如圖1,當(dāng)α=90°時(shí),求∠P1PP2的度數(shù);
          (2)如圖2,當(dāng)點(diǎn)P2在AP1的延長(zhǎng)線上時(shí),求證:△P2P1P∽△P2PA;
          (3)如圖3,過BP的中點(diǎn)E作l1⊥BP,過BP2的中點(diǎn)F作l2⊥BP2 , l1與l2交于點(diǎn)Q,連接PQ,求證:P1P⊥PQ.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,圓形鐵片與直角三角尺、直尺緊靠在一起平放在桌面上.已知鐵片的圓心為O,三角尺的直角頂點(diǎn)C落在直尺的10cm處,鐵片與直尺的唯一公共點(diǎn)A落在直尺的14cm處,鐵片與三角尺的唯一公共點(diǎn)為B,下列說法錯(cuò)誤的是( 。

          A.圓形鐵片的半徑是4cm
          B.四邊形AOBC為正方形
          C.弧AB的長(zhǎng)度為4πcm
          D.扇形OAB的面積是4πcm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為⊙O的直徑,P是BA延長(zhǎng)線上一點(diǎn),PC切⊙O于點(diǎn)C,CG是⊙O的弦,CG⊥AB,垂足為D.

          (1)求證:∠PCA=∠ABC;
          (2)過點(diǎn)A作AE∥PC,交⊙O于點(diǎn)E,交CD于點(diǎn)F,連接BE.若sin∠P=,CF=5,求BE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象相交于點(diǎn)A(1,4)和點(diǎn)B(n,﹣2).

          (1)求反比例函數(shù)和一次函數(shù)的解析式;
          (2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫出x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為提高節(jié)水意識(shí),小申隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:升)

          (1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);
          (2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
          (3)請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個(gè)月(按30天計(jì)算)的節(jié)約用水量.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,C城市在A城市正東方向,現(xiàn)計(jì)劃在A、C兩城市間修建一條高速公路(即線段AC),經(jīng)測(cè)量,森林保護(hù)區(qū)的中心P在A城市的北偏東60°方向上,在線段AC上距A城市120km的B處測(cè)得P在北偏東30°方向上,已知森林保護(hù)區(qū)是以點(diǎn)P為圓心,100km為半徑的圓形區(qū)域,請(qǐng)問計(jì)劃修建的這條高速公路是否穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù): ≈1.73)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,O為原點(diǎn),A(0,4),點(diǎn)B在直線y=kx+6(k>0)上,若以O(shè)、A、B為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),k的值為( )
          A.
          B.
          C.3
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】除夕夜,父母給自己的一雙兒女發(fā)壓歲錢,先每人發(fā)了200元,然后在三個(gè)紅包里面分別裝有標(biāo)有100元,300元,500元的卡片,每個(gè)紅包和卡片除數(shù)字不同外,其余均相同,妹妹從三個(gè)紅包中隨機(jī)抽取了一個(gè)紅包,記錄數(shù)字后放回洗勻,哥哥再隨機(jī)抽取一個(gè)紅包,請(qǐng)用列表法或畫樹狀圖的方法,求父母給自己的一雙兒女發(fā)壓歲錢總和大于800元的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案