日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知在矩形ABCD中,相鄰兩邊的長分別為6和8,則矩形ABCD的一條對角線的長等于______.
          ∵矩形相鄰的兩邊長分別為6和8,
          ∴對角線=
          62+82
          =10.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在矩形ABCD中,AD=8,CD=4,點(diǎn)E從點(diǎn)D出發(fā),沿線段DA以每秒1個(gè)單位長的速度向點(diǎn)A方向移動,同時(shí)點(diǎn)F從點(diǎn)C出發(fā),沿射線CD方向以每秒2個(gè)單位長的速度移動,當(dāng)B精英家教網(wǎng),E,F(xiàn)三點(diǎn)共線時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)點(diǎn)E移動的時(shí)間為t(秒).
          (1)求當(dāng)t為何值時(shí),兩點(diǎn)同時(shí)停止運(yùn)動;
          (2)設(shè)四邊形BCFE的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
          (3)求當(dāng)t為何值時(shí),以E,F(xiàn),C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形;
          (4)求當(dāng)t為何值時(shí),∠BEC=∠BFC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知在矩形ABCD中,AB=4,BC=
          25
          2
          ,O為BC上一點(diǎn),BO=
          7
          2
          ,如圖所示,以BC所在直線為x軸,O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,M為線段OC上的一點(diǎn).
          (1)若點(diǎn)M的坐標(biāo)為(1,0),如圖①,以O(shè)M為一邊作等腰△OMP,使點(diǎn)P在矩形ABCD的一邊上,則符合條件的等腰三角形有幾個(gè)?請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);
          (2)若將(1)中的點(diǎn)M的坐標(biāo)改為(4,0),其它條件不變,如圖②,那么符合條件的等腰三角形有幾個(gè)?求出所有符合條件的點(diǎn)P的坐標(biāo);
          (3)若將(1)中的點(diǎn)M的坐標(biāo)改為(5,0),其它條件不變,如圖③,請直接寫出符合條件的等腰三角形有幾個(gè).(不必求出點(diǎn)P的坐標(biāo))
          精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知在矩形ABCD中,AC=12,∠ACB=15°,那么頂點(diǎn)D到AC的距離為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•德慶縣一模)如圖,已知在矩形ABCD中,E是AD上的一點(diǎn),連接EC,BC=CE,BF⊥EC于點(diǎn)F.
          求證:△ABE≌△FBE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在矩形ABCD中,AD=8cm,CD=4cm,點(diǎn)E從點(diǎn)D出發(fā),沿線段DA以每秒1cm的速度向點(diǎn)A方向移動,同時(shí)點(diǎn)F從點(diǎn)C出發(fā),沿射線CD方向以每秒2cm的速度移動,當(dāng)B、E、F三點(diǎn)共線時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)點(diǎn)E移動的時(shí)間為t(秒),
          (1)求證:△BCF∽△CDE;
          (2)求t的取值范圍;
          (3)連接BE,當(dāng)t為何值時(shí),∠BEC=∠BFC?

          查看答案和解析>>

          同步練習(xí)冊答案