日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知為等腰三角形,,,,點(diǎn)上,點(diǎn)在射線.

          (1)如圖1,若∠BAC=60°,點(diǎn)F與點(diǎn)C重合,求證:AF=AE+AD

          (2)如圖2,AD=AB,求證:AF=AE+BC. .

          【答案】1)見解析;(2)見解析;

          【解析】

          1)由∠BAC=EDF=60°,推出ABCDEF為等邊三角形,于是得到∠BCE+ACE=DCA+ECA=60°,推出BCE≌△ACDSAS),根據(jù)全等三角形的性質(zhì)得到AD=BE,即可得到結(jié)論;

          2)在FA上截取FM=AE,連接DM,推出AED≌△MFDSAS),根據(jù)全等三角形的性質(zhì)得到DA=DM=AB=AC,∠ADE=MDF,證得∠ADM=EDF=BAC,推出ABC≌△DAMSAS),根據(jù)全等三角形的性質(zhì)得到AM=BC,即可得到結(jié)論.

          證明:(1)∵∠BAC=EDF=60°,

          ∴△ABC、DEF為等邊三角形,

          ∴∠BCE+ACE=DCA+ECA=60°,

          BCEACD

          ∴△BCE≌△ACD(SAS)

          AD=BE,

          AE+AD=AE+BE=AB=AF

          (2)FA上截取FM=AE,連接DM,

          ∵∠BAC=EDF,

          ∴∠AED=MFD,

          AEDMFD

          ,

          ∴△AED≌△MFD(SAS),

          DA=DM=AB=AC,∠ADE=MDF,

          ∴∠ADE+EDM=MDF+EDM

          即∠ADM=EDF=BAC,

          ABCDAM,

          ,

          ∴△ABC≌△DAM(SAS),

          AM=BC

          AE+BC=FM+AM=AF.

          AF=AE+BC.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,ABAC,ADBC邊的中線,過點(diǎn)ABC的平行線,過點(diǎn)BAD的平行線,兩線交于點(diǎn)E.

          1)求證:四邊形ADBE是矩形;

          2)連接DE,交AB于點(diǎn)O,若BC=8AO=,求cosAED的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,∠α、∠β分別是與∠BAD、∠BCD相鄰的補(bǔ)角,且∠B+CDA=140°,則∠α+β= ).

          A.260°B.150°C.135°D.140°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).

          △ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長線交AB于點(diǎn)F.

          (1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;BG=GC;AGCF;SFGC=3.其中正確結(jié)論的是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.

          (1)求證:AP=BQ;

          (2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D處,折痕交CD邊于點(diǎn)E

          (1)求證:四邊形BCED是菱形;

          (2)若點(diǎn)P時(shí)直線l上的一個(gè)動點(diǎn),請計(jì)算PD′+PB的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:

          閱讀時(shí)間

          (小時(shí))

          2

          2.5

          3

          3.5

          4

          學(xué)生人數(shù)(名)

          1

          2

          8

          6

          3

          則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是(  )

          A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A-C-B-A運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(t0).

          1)若點(diǎn)PAC上,且滿足PA=PB時(shí),求出此時(shí)t的值;

          2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;

          3)在運(yùn)動過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.

          查看答案和解析>>

          同步練習(xí)冊答案