日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(不包括射線的端點).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

          研究:

          (1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明;

          (2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長;若不能,請說明理由;

          (3)若將三角板的直角頂點放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.

           

          【答案】

          (1)PD=PE;(2)1,;(3)ME="3MD"

          【解析】

          試題分析:(1)連接PC,通過證明△PCD≌△PBE,得出PD=PE;

          (2)分為點C與點E重合、CE=、CE=1、E在CB的延長線上四種情況進(jìn)行說明;

          (3)作MH⊥CB,MF⊥AC,構(gòu)造相似三角形△MDF和△MHE,然后利用對應(yīng)邊成比例,就可以求出MD和ME之間的數(shù)量關(guān)系.

          (1)連接PC,

          因為△ABC是等腰直角三角形,P是AB的中點,

          ∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.

          ∴∠ACP=∠B=45°.

          又∵∠DPC+∠CPE=∠BPE+∠CPE,

          ∴∠DPC=∠BPE.

          ∴△PCD≌△PBE.

          ∴PD=PE;

          (2)△PBE是等腰三角形,

          ①當(dāng)PE=PB時,此時點C與點E重合,CE=0;

          ②當(dāng)BP=BE時,E在線段BC上,CE=;E在CB的延長線上,CE=;

          ③當(dāng)EP=EB時,CE=1;

          (3)過點M作MF⊥AC,MH⊥BC

           

          ∵∠C=90°,

          ∴四邊形CFMH是矩形即∠FMH=90°,MF=CH.

          ∵∠DMF+∠DMH=∠DMH+∠EMH=90°,

          ∴∠DMF=∠EMH,

          ∵∠MFD=∠MHE=90°,

          ∴△MFD∽△MHE,

          考點:旋轉(zhuǎn)問題的綜合題

          點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=4
          2
          ,∠C=90°.將一塊三角板的直角頂點放在斜邊AB的中點P處,將三角板繞P點旋轉(zhuǎn),三角板自兩直角邊分別交射線AC、射線CB于D、E兩點,如右圖,①、②、③是旋轉(zhuǎn)三角板得到的圖形中的其中三種.
          精英家教網(wǎng)
          探究:(1)三角板繞P點旋轉(zhuǎn)時,觀察線段PD與PE之間有什么大小關(guān)系?它們的關(guān)系表示為
           
          并以圖②為例,加以證明;
          (2)三角板繞P點旋轉(zhuǎn)時△PBE是否能成為等腰三角形,若能,指出所有的情況(即求出△PBE為等腰三角形時CE的長);若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:
          (1)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.
          (2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
          (1)三角板繞點P旋轉(zhuǎn),當(dāng)PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當(dāng)PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結(jié)論.
          (2)三角板繞點P旋轉(zhuǎn),△PEB是否成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.
          (3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,如圖④,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖形加以證明.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

          探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為
          4
          4
          ,周長
          8
          8

          (2)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明.
          (3)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.如圖①②③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
          (1)三角板繞點P旋轉(zhuǎn),當(dāng)PD⊥AC時,如圖①,四邊形PDCE是正方形,則PD=PE.當(dāng)PD與AC不垂直時,如圖②、③,PD=PE還成立嗎?并選擇其中的一個圖形證明你的結(jié)論.
          (2)若D、E兩點分別在線段AC和CB上移動時,設(shè)BE的長為x,△APD的面積為y,求y與x之間的函數(shù)關(guān)系式.
          (3)三角板繞點P旋轉(zhuǎn),△PEB是否能成為等腰三角形?若能,求出此時CE的長;若不能,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案