日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
          (1)求證:BF=2AE;
          (2)若CD=1,求AD的長.
          分析:(1)先判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=∠CBE,然后利用“角邊角”證明△ADC和△BDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AF,從而得證;
          (2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解.
          解答:(1)證明:∵AD⊥BC,∠BAD=45°,
          ∴△ABD是等腰直角三角形,
          ∴AD=BD,
          ∵BE⊥AC,AD⊥BC,
          ∴∠CAD+∠ACD=90°,
          ∠CBE+∠ACD=90°,
          ∴∠CAD=∠CBE,
          在△ADC和△BDF中,
          ∠CAD=∠CBE
          AD=BD
          ∠ADC=∠BDF=90°

          ∴△ADC≌△BDF(ASA),
          ∴BF=AC,
          ∵AB=BC,BE⊥AC,
          ∴AC=2AE,
          ∴BF=2AE;

          (2)解:∵△ADC≌△BDF,
          ∴DF=CD=1,
          在Rt△CDF中,CF=
          DF2+CD2
          =
          2
          ,
          ∵BE⊥AC,AE=EC,
          ∴AF=CF=
          2

          ∴AD=AF+DF=1+
          2
          點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),勾股定理的應(yīng)用,以及線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
          求證:∠A=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
          求:∠1+∠2+∠3+∠4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
          求證:∠ANM=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
          (1)求∠2的度數(shù);
          (2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案