日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,拋物線y=mx2+8mx+12n與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),在第二象限內(nèi)精英家教網(wǎng)拋物線上的一點(diǎn)C,使△OCA∽△OBC,且AC:BC=
          3
          :1,若直線AC交y軸于P.
          (1)當(dāng)C恰為AP中點(diǎn)時(shí),求拋物線和直線AP的解析式;
          (2)若點(diǎn)M在拋物線的對(duì)稱軸上,⊙M與直線PA和y軸都相切,求點(diǎn)M的坐標(biāo).
          分析:(1)設(shè)出拋物線y=mx2+8mx+12n與x軸交于A、B兩點(diǎn)的坐標(biāo),利用△OCA∽△OBC,證得△ABC為直角三角形,進(jìn)一步求得P點(diǎn)坐標(biāo),利用待定系數(shù)法求得直線解析式;
          (2)利用拋物線的對(duì)稱性,首先拋物線解析式及雙切線的性質(zhì)求得點(diǎn)M橫坐標(biāo),再進(jìn)一步利用三角形全等的性質(zhì)和(1)所求直線解決問題.
          解答:解:(1)設(shè)y=mx2+8mx+12n與x軸交于A、B兩點(diǎn),A(x1,0)、B(x2,0),
          在Rt△APO中,
          ∵C為AP中點(diǎn),
          OC=
          1
          2
          AP=AC=CP
          ,
          ∵△OCA∽△OBC,
          OC
          OB
          =
          OA
          OC
          =
          AC
          BC
          =
          3

          設(shè)AC=
          3
          k,BC=k,OA?OB=OC2=3k2
          ,
          OC=
          3
          k,PC=
          3
          k,OB=k,OA=3k,AB=2k,OP=
          3
          k

          在△ABC中,
          ∵BC2+AC2=AB2,
          ∴∠ACB=90°,∠CAB=30°.
          x1+x2=-BO-AO=-(AO+BO)=-
          8m
          m
          =-8

          ∴-k-3k=-4k=-8,
          ∴k=2.
          ∴A(-6,0),B(-2,0),
          ∴OP=2
          3
          ,P(0,2
          3
          )

          設(shè)AP直線y=knx+2
          3
          ,A(-6,0)代入得0=-6kn+2
          3
          ,
          ∴kn=
          3
          3
          ,直線AP為y=
          3
          3
          x+2
          3
          ;

          (2)如圖,
          精英家教網(wǎng)設(shè)拋物線的對(duì)稱軸為M1M2,由題意M1到y(tǒng)軸距離M1P1=M1N1(N1為M1N1⊥AP的垂足).
          同理M2P2=M2N2
          y=-
          3
          3
          x2-
          8
          3
          3
          x-4
          3
          ,
          -
          b
          2a
          =-4

          ∴M1和M2的橫坐標(biāo)均為-4.
          設(shè)M1M2與AP交于Q點(diǎn),M1N1=M2N2=4=M1P1=M2P2=4,
          OP=
          3
          k,AP=2
          3
          k
          ,
          ∴∠PAO=30°,∠AQM2=60°,
          將Q點(diǎn)橫坐標(biāo)-4代入直線AP方程:y=
          3
          3
          ×(-4)+2
          3
          =-
          4
          3
          3
          +
          6
          3
          3
          =
          2
          3
          3
          ;
          ∵△M1QN1≌△M2QN2,
          M1Q=M2Q=
          4
          3
          ×2=
          8
          3
          3

          ∴M1的縱坐標(biāo)=
          8
          3
          3
          +
          2
          3
          3
          =
          10
          3
          3
          ,
          M1(-4,
          10
          3
          3
          )

          ∴M2點(diǎn)的縱坐標(biāo)為(
          8
          3
          3
          -
          2
          3
          3
          )=
          6
          3
          3
          =2
          3
          的相反數(shù)-2
          3

          ∴M2(-4,-2
          3
          ).
          綜上,拋物線:y=-
          3
          3
          x2-
          8
          3
          3
          x-4
          3
          ,直線AP:y=
          3
          3
          x+2
          3
          ,M1(-4,
          10
          3
          3
          ),M2(-4,-2
          3
          )
          點(diǎn)評(píng):此題考查待定系數(shù)法求函數(shù)解析式,三角形相似的性質(zhì),二次函數(shù)的對(duì)稱性,雙切線的性質(zhì)解決問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,拋物線y=ax2+bx+c與兩坐標(biāo)軸的交點(diǎn)分別是A、B、E,且△ABE是等腰直角三角形,AE=BE,則下列關(guān)系式中不能成立的是( 。
          A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•河源二模)已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0).
          (1)求拋物線的解析式;
          (2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo);
          (3)設(shè)拋物線交y軸于點(diǎn)C,問該拋物線對(duì)稱軸上是否存在點(diǎn)M,使得△MAC的周長最。咳舸嬖,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•槐蔭區(qū)一模)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-1,0)、(0,-3).
          (1)求拋物線的函數(shù)解析式;
          (2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
          (3)在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1997•陜西)如圖所示,拋物線對(duì)應(yīng)的函數(shù)解析表達(dá)式只可能是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1997•陜西)如圖所示的拋物線是把y=-x2經(jīng)過平移而得到的.這時(shí)拋物線過原點(diǎn)O和x軸正向上一點(diǎn)A,頂點(diǎn)為P;
          ①當(dāng)∠OPA=90°時(shí),求拋物線的頂點(diǎn)P的坐標(biāo)及解析表達(dá)式;
          ②求如圖所示的拋物線對(duì)應(yīng)的二次函數(shù)在-
          1
          2
          ≤x≤
          1
          2
          時(shí)的最大值和最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案