日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知AB為⊙O的直徑,C為半圓上一點(diǎn),D為半圓的中點(diǎn),AH⊥CD于H.
          (1)如圖1,求證:OH平分∠AHC;
          (2)如圖2,連AC,BC,若AC=6,BC=4,求OH的長.
          分析:(1)連接AC,BC,AD,OD,OC,先證明△ABC∽△ADH,可得∠HAD=∠CAB,繼而得出∠HAC=∠DAB,由∠DAB=45°,判斷△HAC是等腰直角三角形,繼而證明△AOH≌△COH,根據(jù)對應(yīng)角相等,得出結(jié)論;
          (2)OH是等腰直角△HAC的直角角分線,在Rt△ABC中求出AB,得出OA,在Rt△AOM中求出OM,根據(jù)OH=MH-OM,可得出答案.
          解答:解:連接AC,BC,AD,OD,OC,
          在Rt△ABC和Rt△ADH中,∠ACB=∠AHD=90°,∠ABC=∠ADH(同弧所對圓周角相等),
          ∴△ABC∽△ADH,
          ∴∠HAD=∠CAB,
          ∴∠HAC=∠DAB,
          又∵∠DAB=45°(OA,OB,OD是半徑,D是半圓中點(diǎn),△AOD是等腰直角三角形),
          ∴∠HAC=45°,
          ∴△HAC是等腰直角三角形,
          ∴HA=HC,
          在△AOH和△COH中,
          OA=OC
          OH=OH
          AH=CH
          ,
          ∴△AOH≌△COH(SSS),
          ∴∠AHO=∠CHO,
          ∴OH平分∠AHC.

          (2)OH是等腰直角△HAC的直角角分線,
          則OH垂直平分AC,交點(diǎn)標(biāo)注為M,
          則MA=MC=MH=
          1
          2
          AC=3,
          在Rt△ABC中AB=
          AC2+BC2
          =2
          13
          ,
          則OA=
          13
          ,
          在Rt△OMA中,OM=
          OA2-MA2
          =2,
          ∴OH=MH-OM=3-2=1.
          點(diǎn)評:本題考查了圓的綜合,涉及了全等三角形的判定的與性質(zhì)、勾股定理及圓周角定理,綜合性較強(qiáng),解答本題要求同學(xué)們具備扎實(shí)的基本功,能將所學(xué)知識融會(huì)貫通.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知AB為⊙O的直徑,PA,PC是⊙O的切線,A,C為切點(diǎn),∠BAC=30°.
          (Ⅰ)求∠P的大。
          (Ⅱ)若AB=2,求PA的長(結(jié)果保留根號).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          22、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點(diǎn),弦PQ交CD于E,則PE•EQ的值是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,已知AB為⊙O的直徑,C、D是直徑AB同側(cè)圓周上兩點(diǎn),且弧CD=弧BD,過D作DE⊥AC于點(diǎn)E,求證:DE是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•沙市區(qū)一模)如圖,已知AB為⊙O的直徑,PA與⊙O相切與點(diǎn)A,線段OP與弦AC垂直并相交于點(diǎn)D,OP與⊙O相交于點(diǎn)E,連接BC.
          (1)求證:△PAD∽△ABC;
          (2)若PA=10,AD=6,求AB和PE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知AB為半圓的直徑,弦AD、BC相交于M,點(diǎn)E在AM上,且∠CEM=∠B,AB=1,則cos∠AMC的值等于線段(  )的長.

          查看答案和解析>>

          同步練習(xí)冊答案