日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】方程2+▲=3x,▲處被墨水蓋住了,已知方程的解是x2,那么▲處的數(shù)字是_____

          【答案】4.

          【解析】

          方程的解是指使方程左右兩邊相等的未知數(shù)的值。方程的解也叫做方程的根。根據(jù)方程的解滿足方程,即將方程的解代入方程中,方程成立,所以把x=2代入已知方程,可以列出關(guān)于的方程,通過解該方程可以求得處的數(shù)字.

          解:把x=2代入方程,得2+▲=6,

          解得▲=4.

          故答案為:4.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作BOC,使BOCABO全等,則點(diǎn)C坐標(biāo)為________________________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】清朝康熙皇帝是我國歷史上對數(shù)學(xué)很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專著,其中有一文《積求勾股法》,它對“三邊長為34、5的整數(shù)倍的直角三角形,已知面積求邊長”這一問提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語言表述是:“若直角三角形的三邊長分別為3、45的整數(shù)倍,設(shè)其面積為S,則第一步: m;第二步: k;第三步:分別用3、4、5乘以k,得三邊長”.

          1)當(dāng)面積S等于150時(shí),請用康熙的“積求勾股法”求出這個(gè)直角三角形的三邊長;

          2)你能證明積求勾股法的正確性嗎?請寫出證明過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】a是一個(gè)兩位數(shù),b是一個(gè)三位數(shù),把a放在b的右邊組成一個(gè)五位數(shù),用a,b的代數(shù)式表示所得的五位數(shù)是( 。

          A. ba B. 10b+a C. 10000b+a D. 100b+a

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若(m+3)x|m|2+5=0是關(guān)于x的一元一次方程,則m=_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)據(jù),1,2,2,3,3的極差為(

          A. 1 B. 2 C. 3 D. 6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:
          (1)|﹣2|﹣(2﹣π)0++(﹣2)3
          (2)(﹣2x32(﹣x2)÷[(﹣x)2]3
          (3)(x+y)2(x﹣y)2
          (4)(x﹣2y+3z)(x+2y﹣3z)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長線上一點(diǎn),N∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN

          下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

          證明:在邊AB上截取AE=MC,連ME

          正方形ABCD中,∠B=∠BCD=90°,AB=BC

          ∴∠NMC=180°—∠AMN—∠AMB

          =180°—∠B—∠AMB

          =∠MAB=∠MAE

          (下面請你完成余下的證明過程)

          2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.

          3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

          1 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】可樂和奶茶含有大量的咖啡因,世界衛(wèi)生組織建議青少年每天攝入的咖啡因不能超過0.000085kg,將數(shù)據(jù)0.000085用科學(xué)記數(shù)法表示為____

          查看答案和解析>>

          同步練習(xí)冊答案