日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•保定一模)如圖,AB表示的是某單位辦公樓的高,AE表示從樓頂垂掛下的宣傳條幅,其長為30米,CD表示張明同學所處的位置與高度,張明同學測得條幅頂端A的仰角為60°,測得條幅底端E的仰角為30°.求張明同學到辦公樓的水平距離(精確到整米數(shù)).
          (參考數(shù)據(jù):
          2
          ≈1.41,
          3
          ≈1.73)
          分析:首先分析圖形,根據(jù)題意過D點作DF⊥AB于F點構造直角三角形,利用其公共邊構造方程求解.
          解答:解:作DF⊥AB于F點,

          依題意,得∠FDA=60°,∠FDE=30°,
          在Rt△DEF中,設EF=x,則DF=
          3
          x.
          在Rt△ADF中,tan60°=
          30+x
          3
          x
          =
          3
          ,
          解得:x=15,
          ∴DF=
          3
          x≈26.
          答:張明同學到辦公樓的水平距離約26米.
          點評:本題考查了解直角三角形的應用,仰角與俯角的問題,要求學生能借助仰角構造直角三角形并解直角三角形.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2013•保定一模)如圖,已知△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•保定一模)如圖,點D是等邊△ABC內(nèi)一點,將△DBC繞點B旋轉(zhuǎn)到△EBA的位置,則∠EBD的度數(shù)是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:閱讀理解

          (2013•保定一模)閱讀:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,連接AE,AC,如圖1
          求證:AE=CD,AE⊥CD.
          證明:延長CD交AE于K
          在△AEB和△CDB中
          ∠ABE=∠CBD=90°
          AB=BC
          BE=DB

          ∴△AEB≌△CDB(SAS)
          ∴AE=CD
          ∠EAB=∠DCB
          ∵∠DCB+∠CDB=90°
          ∠ADK=∠CDB
          ∴∠ADK+∠DAK=90°
          ∴∠ADK=90°
          ∴AE⊥CD
          (2)類比:若關系和位置關系還成立嗎?若成立,請給與證明;若不成立,請說明理由.將(1)中的Rt△DBE繞點逆時針旋轉(zhuǎn)一個銳角,如圖2所示,問(1)中線段AE,CD間的數(shù)量;
          (3)拓展:在圖2中,將“AB=BC,DB=EB”改成“BC=kAB,DB=kEB,k>1”其它條件均不變,如圖3所示,問(1)中線段AE,CD間的數(shù)量關系和位置關系還成立嗎?若成立,請給與證明;若不成立,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•保定一模)如圖1,圖2所示,直線l:y=x+b過點P,點P自原點O開始,沿x軸正半軸以每秒1個單位的速度運動.設運動時間為t(s),(0≤t≤7).直角梯形ABCD,AB∥CD,∠D=90°,A(1,O),B(7,0),C(4,3).直線l與折線DC-CB交于N,與折線DA-AB交于M,與y軸交于點Q.設△BMN的面積為S.

          (1)用含t的代數(shù)式表示b;
          (2)確定S與t之間的函數(shù)關系式;
          (3)t為何值時,S最大;
          (4)t為何值時,S等于梯形ABCD面積的一半;
          (5)直接寫出t為何值時,△POQ與以P,B,C為頂點的三角形相似.

          查看答案和解析>>

          同步練習冊答案