日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在以O(shè)為圓心的兩個同心圓中,MN為大圓的直徑,交小圓于點(diǎn)P、Q,大圓的弦MC交小圓于點(diǎn)A、B.若OM=2,OP=1,MA=AB=BC,則△MBQ的面積為
          3
          15
          8
          3
          15
          8
          分析:首先過O點(diǎn)作OD⊥AB,垂足為D,連接OA,設(shè)OD=x,AD=y,利用勾股定理和垂徑定理求出x和y的值,繼而求出sin∠MDO的值,然后過B點(diǎn)作BE⊥MQ,垂足為E,在Rt△MEB中,sin∠BME=sin∠MDO,求出BE的值,利用三角形的面積公式求出△MBQ的面積.
          解答:解:過O點(diǎn)作OD⊥AB,垂足為D,連接OA,
          設(shè)OD=x,AD=y,
          ∵O是圓心,MC是圓的一條弦,OD⊥AB,
          ∴AD=DB=
          1
          2
          AB,MD=CD=
          1
          2
          MC,
          ∵M(jìn)A=AB=BC,
          ∴MA=2AD,
          在Rt△ADO中,AD2+OD2=OA2,
          即y2+x2=1…①,
          在Rt△MDO中,OD2+MD2=MO2,
          即x2+9y2=4…②,
          聯(lián)立①②解得x=
          10
          4
          ,y=
          6
          4

          在Rt△MDO中,sin∠MDO=
          OD
          OM
          =
          10
          8

          過B點(diǎn)作BE⊥MQ,垂足為E,
          在Rt△MEB中,sin∠BME=
          BE
          BM
          =
          10
          8
          ,
          解得BE=
          15
          4
          ,
          S△BMQ=
          1
          2
          MQ•BE=
          1
          2
          ×3×
          15
          4
          =
          3
          15
          8
          ,
          故答案為
          3
          15
          8
          點(diǎn)評:本題主要考查垂徑定理和勾股定理的知識點(diǎn),解答本題的關(guān)鍵是添加輔助線,利用輔助線構(gòu)造成直角三角形進(jìn)行解題,此題是一道比較典型的試題,請同學(xué)們注意.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在以O(shè)為圓心的兩個同心圓中,大圓的直徑AB交小圓于C、D兩點(diǎn),AC=CD=DB,分別以C、D為圓心,以CD為半徑作圓.若AB=6cm,則圖中陰影部分的面積為
           
          cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          9、如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,點(diǎn)P為切點(diǎn),已知AB=8,大圓半徑為5,則小圓半徑為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2006•靜安區(qū)二模)如圖,在以O(shè)為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于B,大圓的弦BC⊥AB,過點(diǎn)C作大圓的切線交AB的延長線于D,OC交小圓于E
          (1)求證:△AOB∽△BDC;
          (2)設(shè)大圓的半徑為x,CD的長y,yx之間的函數(shù)解析式,并寫出定義域.
          (3)△BCE能否成為等腰三角形?如果可能,求出大圓半徑;如果不可能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點(diǎn)C,若大圓的半徑為5cm,小圓的半徑為3cm,則弦AB的長為( 。

          查看答案和解析>>

          同步練習(xí)冊答案