分析 (1)由A與B的坐標(biāo)求出OA與OB的長,進(jìn)而得到B為OA的中點(diǎn),而D為OC的中點(diǎn),利用中位線定理即可得證;
(2)如圖1,作BF⊥AC于點(diǎn)F,取AB的中點(diǎn)G,確定出G坐標(biāo),由平行線間的距離相等求出BF的長,在直角三角形ABF中,利用斜邊上的中線等于斜邊的一半求出FG的長,進(jìn)而確定出三角形BFG為等邊三角形,即∠BAC=30°,設(shè)OC=x,則有AC=2x,利用勾股定理表示出OA,根據(jù)OA的長求出x的值,即可確定出C坐標(biāo);
(3)如圖2,當(dāng)四邊形ABDE為平行四邊形時(shí),AB∥DE,進(jìn)而得到DE垂直于OC,再由D為OC中點(diǎn),得到OE=CE,再由OE垂直于AC,得到三角形AOC為等腰直角三角形,求出OC的長,確定出C坐標(biāo),設(shè)直線AC解析式為y=kx+b,將A與C坐標(biāo)代入求出k與b的值,即可確定出AC解析式.
解答 解:(1)∵A(0,8),B(0,4),
∴OA=8,OB=4,點(diǎn)B為線段OA的中點(diǎn),
∵點(diǎn)D為OC的中點(diǎn),即BD為△AOC的中位線,
∴BD∥AC;(2)如圖1,作BF⊥AC于點(diǎn)F,取AB的中點(diǎn)G,則G(0,6),
∵BD∥AC,BD與AC的距離等于2,
∴BF=2,
∵在Rt△ABF中,∠AFB=90°,AB=4,點(diǎn)G為AB的中點(diǎn),
∴FG=BG=$\frac{1}{2}$AB=2,
∴△BFG是等邊三角形,∠ABF=60°.
∴∠BAC=30°,
設(shè)OC=x,則AC=2x,
根據(jù)勾股定理得:OA=$\sqrt{A{C}^{2}-O{C}^{2}}$=$\sqrt{3}$x,
∵OA=8,
∴x=$\frac{8\sqrt{3}}{3}$,
∵點(diǎn)C在x軸的正半軸上,
∴點(diǎn)C的坐標(biāo)為($\frac{8\sqrt{3}}{3}$,0);(3)如圖2,當(dāng)四邊形ABDE為平行四邊形時(shí),AB∥DE,
∴DE⊥OC,
∵點(diǎn)D為OC的中點(diǎn),
∴OE=EC,
∵OE⊥AC,
∴∠OCA=45°,
∴OC=OA=8,
∵點(diǎn)C在x軸的正半軸上,
∴點(diǎn)C的坐標(biāo)為(8,0),
設(shè)直線AC的解析式為y=kx+b(k≠0).
將A(0,8),C(8,0)得:
$\left\{\begin{array}{l}{8k+b=0}\\{b=8}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=8}\end{array}\right.$.
∴直線AC的解析式為y=-x+8.
點(diǎn)評 此題屬于一次函數(shù)綜合題,涉及的知識有:三角形中位線定理,坐標(biāo)與圖形性質(zhì),待定系數(shù)法求一次函數(shù)解析式,平行四邊形的性質(zhì),等邊三角形的性質(zhì),勾股定理,含30度直角三角形的性質(zhì),熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)(含9環(huán))以上的環(huán)數(shù) | |
甲 | 7 | 1.2 | 7 | 1 |
乙 | 7 | 5.4 | 7.5 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:3 | B. | 2:3 | C. | 1:4 | D. | 2:5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com