【題目】已知:正方形,
,
.求證:
.
【答案】見(jiàn)解析.
【解析】
延長(zhǎng)CD到M,使DM=BE,連接AM,證△ABE≌△ADM,推出∠DAM=∠BAE,AE=AM,求出∠FAM=∠EAF,證△EAF≌△MAF,推出EF=MF,S△EAF=S△MAF,根據(jù)三角形面積公式求出即可.
證明:延長(zhǎng)CD到M,使DM=BE,連接AM,
∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠ADF=∠ADM=∠BAD=90°,
∵∠EAF=45°,
∴∠BAE+∠DAF=45°,
在△ABE和△ADM中,,
∴△ABE≌△ADM,
∴∠DAM=∠BAE,AE=AM,
∴∠FAM=∠DAF+∠DAM=∠DAF+∠BAE=45°=∠EAF,
在△EAF和△MAF中,,
∴△EAF≌△MAF,
∴EF=MF,S△EAF=S△MAF,
∴EF×AH=
MF×AD,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知
,
.
求拋物線的解析式;
在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使
是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),
的面積最大?求出
的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)
,
,與
軸正半軸交于
點(diǎn),與
軸交于
點(diǎn).
(1)求直線的解析式;
(2)設(shè)點(diǎn)為直線
下方拋物線上一點(diǎn),連接
、
,當(dāng)
面積最大時(shí),求點(diǎn)
的坐標(biāo);
(3)在(2)的條件下,直線過(guò)直線
與
軸的交點(diǎn)
.設(shè)
的中點(diǎn)為
,
是直線
上一點(diǎn),
是直線
上一點(diǎn),求
周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某核桃種植基地計(jì)劃種植A、B兩種優(yōu)質(zhì)核桃共30畝,已知這兩種核桃的年產(chǎn)量分別為800千克/畝、1000千克/畝,收購(gòu)價(jià)格分別是4.2元/千克、4元/千克.
(1)若該基地收獲兩種核桃的年總產(chǎn)量為25800千克,則A、B兩種核桃各種植了多少畝?
(2)設(shè)該基地種植A種核桃a畝,全部收購(gòu)后,總收入為w元,求出w與a之間的函數(shù)關(guān)系式.若要求種植A種核桃的面積不少于B種核桃的一半,那么種植A、B兩種核桃各多少畝時(shí),該種植基地的總收入最多?最多是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段
(1)如圖1,點(diǎn)沿線段
自點(diǎn)
向點(diǎn)
以
的速度運(yùn)動(dòng),同時(shí)點(diǎn)
沿線段點(diǎn)
向點(diǎn)
以
的速度運(yùn)動(dòng),幾秒鐘后,
兩點(diǎn)相遇?
(2)如圖1,幾秒后,點(diǎn)兩點(diǎn)相距
?
(3)如圖2,,
,當(dāng)點(diǎn)
在
的上方,且
時(shí),點(diǎn)
繞著點(diǎn)
以30度/秒的速度在圓周上逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)
沿直線
自
點(diǎn)向
點(diǎn)運(yùn)動(dòng),假若點(diǎn)
兩點(diǎn)能相遇,求點(diǎn)
的運(yùn)動(dòng)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)學(xué)活動(dòng)課中,小敏為了測(cè)量校園內(nèi)旗桿的高度.先在教學(xué)樓的底端
點(diǎn)處,觀測(cè)到旗桿頂端
得
,然后爬到教學(xué)樓上的
處,觀測(cè)到旗桿底端
的俯角是
.已知教學(xué)樓中
、
兩處高度為
米.
(1)求教學(xué)樓與旗桿的水平距離;(結(jié)果保留根號(hào));
(2)求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生會(huì)倡導(dǎo)的“愛(ài)心捐款”活動(dòng)結(jié)束后,學(xué)生會(huì)干部對(duì)捐款情況作了抽樣調(diào)查,并繪制了統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形高度之比為,又知此次調(diào)查中捐15元和20元的人數(shù)共26人.
(1)他們一共抽查了______人;
(2)抽查的這些學(xué)生,總共捐款______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有甲、乙兩個(gè)長(zhǎng)方體的蓄水池,將甲池中的水以每小時(shí)6立方米的速度注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問(wèn)題:
(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)關(guān)系式;
(2)求注水多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;
(3)求注水多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池的蓄水量相同.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com