日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;(a+c)2<b2;③當(dāng)﹣1<x<3時(shí),y<0;④當(dāng)a=1時(shí),將拋物線先向上平移2個(gè)單位,再向右平移1個(gè)單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是(  )

          A. ①③ B. ②③ C. ②④ D. ③④

          【答案】D

          【解析】根據(jù)二次函數(shù)圖象與系數(shù)之間的關(guān)系即可求出答案.

          ①圖象與x軸交于點(diǎn)A(﹣1,0),B(3,0),

          ∴二次函數(shù)的圖象的對(duì)稱軸為x==1,

          =1,

          2a+b=0,故①錯(cuò)誤;

          ②令x=﹣1,

          y=a﹣b+c=0,

          a+c=b,

          (a+c)2=b2,故②錯(cuò)誤;

          ③由圖可知:當(dāng)﹣1<x<3時(shí),y<0,故③正確;

          ④當(dāng)a=1時(shí),

          y=(x+1)(x﹣3)=(x﹣1)2﹣4

          將拋物線先向上平移2個(gè)單位,再向右平移1個(gè)單位,

          得到拋物線y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正確;

          故選:D.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】折紙中的數(shù)學(xué):開本指書刊幅面的規(guī)格大小.如圖①,將一張矩形印刷用紙對(duì)折后可以得到2開紙,再對(duì)折得到4開紙,以此類推可以得到8開紙、16開紙……

          若這張矩形印刷用紙的短邊長為a

          (1)如圖②,若將這張矩形印刷用紙ABCDABBC)進(jìn)行折疊,使得BCAB重合,點(diǎn)C落在點(diǎn)F處,得到折痕BE;展開后,再次折疊該紙,使點(diǎn)A落在E處,此時(shí)折痕恰好經(jīng)過點(diǎn)B,得到折痕BG,求的值.

          (2)如圖③,②中的矩形紙片ABCD折成2開紙BCIH4開紙AMNH,它們的對(duì)角線分別是HCHM.說明HCHM

          (3)將圖①中的2開紙、4開紙、8開紙和16開紙按如圖④所示的方式擺放,依次連接點(diǎn)AB、M、I,則四邊形ABMI的面積是 .(用含a的代數(shù)式表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).

          (1)求辦公樓AB的高度;

          (2)若要在AE之間掛一些彩旗,請你求出AE之間的距離.

          (參考數(shù)據(jù):sin22°,cos22°tan22°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=10,BC=8AC=6.點(diǎn)DAB邊上(不包括端點(diǎn)),DEACDFBC,垂足分別為點(diǎn)E和點(diǎn)F,連結(jié)EF

          (1)判斷四邊形DECF的形狀,并證明;

          (2)線段EF是否存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】填幻方:將1、23、45、6、7、89這九個(gè)數(shù)字分別填在如圖所示的九個(gè)空格中,要求每一行從左到右的數(shù)字逐漸增大,每一列從上到下的數(shù)字也逐漸增大.當(dāng)數(shù)字2、4固定在圖中所示的位置時(shí),按規(guī)則填寫空格,所有可能出現(xiàn)的結(jié)果有( 。

          A.4B.6C.8D.9

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。

          A. b2>4ac

          B. ax2+bx+c≥﹣6

          C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n

          D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:已知點(diǎn)A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個(gè)點(diǎn),點(diǎn)C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

          【答案】

          【解析】過點(diǎn)AADy軸于點(diǎn)D,過點(diǎn)BBEy軸于點(diǎn)E,過點(diǎn)AAFBE軸于點(diǎn)F,如圖所示.

          ∵∠ACB=90°,

          ∴∠ACD+BCE=90°,

          又∵ADy軸,BEy軸,

          ∴∠ACD+CAD=90°,BCE+CBE=90°,

          ∴∠ACD=CBE,BCE=CAD

          ACDCBE中,由

          ACDCBE(ASA).

          設(shè)點(diǎn)B的坐標(biāo)為(m,﹣)(m<0),則E(0,﹣),點(diǎn)D(0,3﹣m),點(diǎn)A(﹣﹣3,3﹣m),

          ∵點(diǎn)A(﹣﹣3,3﹣m)在反比例函數(shù)y=﹣上,

          ,解得:m=3m=2(舍去).

          ∴點(diǎn)A的坐標(biāo)為(﹣1,6),點(diǎn)B的坐標(biāo)為(﹣3,2),點(diǎn)F的坐標(biāo)為(﹣1,2),

          ∴BF=2,AF=4,

          故答案為:2

          點(diǎn)睛

          過點(diǎn)AADy軸于點(diǎn)D,過點(diǎn)BBEy軸于點(diǎn)E過點(diǎn)AAFBE軸于點(diǎn)F,根據(jù)角的計(jì)算得出ACD=CBE,BCE=CAD,由此證出ACDCBE;再設(shè)點(diǎn)B的坐標(biāo)為(m,﹣),由三角形全等找出點(diǎn)A的坐標(biāo),將點(diǎn)A的坐標(biāo)代入到反比例函數(shù)解析式中求出m的值,將m的值代入A,B點(diǎn)坐標(biāo)即可得出點(diǎn)A,B的坐標(biāo),并結(jié)合點(diǎn)A,B的坐標(biāo)求出點(diǎn)F的坐標(biāo),利用勾股定理即可得出結(jié)論.

          型】填空
          結(jié)束】
          18

          【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)為A-3,1)、B-4,-3)、C-2,-4),ABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)180°,得到A1B1C1再將A1B1C1向左平移5個(gè)單位得到A2B2C2

          1)畫出A1B1C1,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);

          2)畫出A2B2C2,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo);

          3Pa,b)是ABC的邊AC上一點(diǎn),ABC經(jīng)旋轉(zhuǎn),平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1、P2,請直接寫出點(diǎn)P2的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABC 的頂點(diǎn)坐標(biāo)分別為A0-3),B3,-2),C2,-4).

          1)在圖中作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1

          2)點(diǎn)C1的坐標(biāo)為:    

          3ABC的周長為    

          查看答案和解析>>

          同步練習(xí)冊答案