日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 先閱讀,再解題
          用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
          移項,得ax2+bx=-c,
          方程兩邊除以a,得x2+
          b
          a
          x=-
          c
          a

          方程兩邊加上(
          b
          2a
          )2
          ,得x2+
          b
          a
          x+(
          b
          2a
          )2=-
          c
          a
          +(
          b
          2a
          )2
          ,即(x+
          b
          2a
          )2=
          b2-4ac
          4a

          因為a≠0,所以4a2>0,從而當(dāng)b2-4ac>0時,方程右邊是一個正數(shù),正數(shù)的平方根有兩個,因此方程有兩個不相等的實數(shù)根;當(dāng)b2-4ac=0時,方程右邊是零,因此方程有兩個相等的實數(shù)根;當(dāng)b2-4ac>0時,方程右邊是一個負(fù)數(shù),而負(fù)數(shù)沒有平方根,因此方程沒有實數(shù)根.
          所以我們可以根據(jù)b2-4ac的值來判斷方程的根的情況,請利用上述論斷,不解方程,判別下列方程的根的情況.
          (1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.
          分析:先分別找出a,b,c的值,再計算b2-4ac的值,根據(jù)上述論斷,即可判別方程的根的情況.
          解答:解:(1)因為b2-4ac=(-14)2-4×12=148>0,所以,原方程有兩個不相等的實數(shù)根
          (2)因為b2-4ac=122-4×4×9=0,
          所以,原方程有兩個相等的實數(shù)根
          (3)因為b2-4ac=(-3)2-4×2×6=-39<0,
          所以,原方程無實數(shù)根
          (4)因為b2-4ac=9+4×3×4=57>0,所以,原方程有兩個不相等的實數(shù)根
          點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:044

          先閱讀,再解題.

          用配方法解一元二次方程(a≠0)如下:

          移項,得

          方程兩邊除以a,得

          方程兩邊加上,得,即

          因為a≠0,所以,從而當(dāng)時,方程右邊是一個正數(shù),正數(shù)的平方根有兩個,因此方程有兩個不相等的實數(shù)根;當(dāng)時,方程右邊是零,因此方程有兩個相等的實數(shù)根;當(dāng)時,方程右邊是一個負(fù)數(shù),而負(fù)數(shù)沒有平方根,因此方程沒有實數(shù)根.所以我們可以根據(jù)的值來判斷方程的根的情況,請利用上述論斷,不解方程,判別方程的根的情況.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          先閱讀,再解題
          用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
          移項,得ax2+bx=-c,
          方程兩邊除以a,得x2+
          b
          a
          x=-
          c
          a

          方程兩邊加上(
          b
          2a
          )2
          ,得x2+
          b
          a
          x+(
          b
          2a
          )2=-
          c
          a
          +(
          b
          2a
          )2
          ,即(x+
          b
          2a
          )2=
          b2-4ac
          4a

          因為a≠0,所以4a2>0,從而當(dāng)b2-4ac>0時,方程右邊是一個正數(shù),正數(shù)的平方根有兩個,因此方程有兩個不相等的實數(shù)根;當(dāng)b2-4ac=0時,方程右邊是零,因此方程有兩個相等的實數(shù)根;當(dāng)b2-4ac>0時,方程右邊是一個負(fù)數(shù),而負(fù)數(shù)沒有平方根,因此方程沒有實數(shù)根.
          所以我們可以根據(jù)b2-4ac的值來判斷方程的根的情況,請利用上述論斷,不解方程,判別下列方程的根的情況.
          (1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年滬科版九年級(上)期末復(fù)習(xí)數(shù)學(xué)試卷(三)(解析版) 題型:解答題

          先閱讀,再解題
          用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
          移項,得ax2+bx=-c,
          方程兩邊除以a,得
          方程兩邊加上,得,即
          因為a≠0,所以4a2>0,從而當(dāng)b2-4ac>0時,方程右邊是一個正數(shù),正數(shù)的平方根有兩個,因此方程有兩個不相等的實數(shù)根;當(dāng)b2-4ac=0時,方程右邊是零,因此方程有兩個相等的實數(shù)根;當(dāng)b2-4ac>0時,方程右邊是一個負(fù)數(shù),而負(fù)數(shù)沒有平方根,因此方程沒有實數(shù)根.
          所以我們可以根據(jù)b2-4ac的值來判斷方程的根的情況,請利用上述論斷,不解方程,判別下列方程的根的情況.
          (1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

          查看答案和解析>>

          同步練習(xí)冊答案