日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀解答題:
          已知如圖①,銳角△ABC中,AB、AC邊上的高CE、BD相交于O點.若∠A=n°,求∠BOC的度數(shù).
          解:∵CE、BD是高
          ∴∠BEO=90°,∠BDA=90°
          在△ABD中,∵∠ADB=90°,∠A=n°
          ∴∠ABD=90°-n°
          ∴∠BOC=∠BEO+∠ABD=90°+90°-n°=180°-n°
          即∠BOC的度數(shù)為(180-n)°
          (1)若將題中已知條件“銳角△ABC”改為“鈍角△ABC,且∠A為鈍角”,其它條件不變(圖②),請你求出∠BOC的度數(shù).
          (2)若將題中已知條件“銳角△ABC”改為“鈍角△ABC,且∠B為鈍角”,其它條件不變(圖③),請你求出∠BOC的度數(shù).

          解:(1)∵CE、BD是高,
          ∴∠BEO=90°,∠BDA=90°,
          在△ABD中,∵∠ADB=90°,∠A=n°,
          ∴∠ABD=n°-90°,
          ∴∠BOC=90°-∠ABD=90°-(n°-90°)=180°-n°,
          即∠BOC的度數(shù)為(180-n)°;

          (2)∵CE、BD是高,
          ∴∠BEO=90°,∠BDA=90°,
          在Rt△ABD中,∠A+∠ABD=90°,
          在Rt△OBE中,∠BOC+∠OBE=90°,
          ∵∠ABD=∠OBE(對頂角相等),
          ∴∠BOC=∠A=n°.
          分析:(1)根據(jù)高線的定義可得∠BEO=90°,∠BDA=90°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠ABD,然后根據(jù)直角三角形兩銳角互余解答;
          (2)根據(jù)高線的定義可得∠BEO=90°,∠BDA=90°,再根據(jù)等角的余角相等解答即可.
          點評:本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),三角形的內(nèi)角和定理,讀懂題目信息,理解求解思路并準(zhǔn)確識圖是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀解答題:
          已知如圖①,銳角△ABC中,AB、AC邊上的高CE、BD相交于O點.若∠A=n°,求∠BOC的度數(shù).
          解:∵CE、BD是高
          ∴∠BEO=90°,∠BDA=90°
          在△ABD中,∵∠ADB=90°,∠A=n°
          ∴∠ABD=90°-n°
          ∴∠BOC=∠BEO+∠ABD=90°+90°-n°=180°-n°
          即∠BOC的度數(shù)為(180-n)°
          (1)若將題中已知條件“銳角△ABC”改為“鈍角△ABC,且∠A為鈍角”,其它條件不變(圖②),請你求出∠BOC的度數(shù).
          (2)若將題中已知條件“銳角△ABC”改為“鈍角△ABC,且∠B為鈍角”,其它條件不變(圖③),請你求出∠BOC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:期末題 題型:探究題

          閱讀下面的問題,并解答題(1)和題(2)。
          如圖①所示,P是等腰△ABC的底邊BC上任一點,PE⊥AB于E,PF⊥AC于F,BH是腰AC上的高。求證:PE+PF=BH。
          證明:連接AP,則有S△ABC=S△ABP+S△ACP 
          AC×BH=AC×PF+AB×PE
          因為AB=AC,所以BH=PE+PF
          按照上述證法或用其它方法證明下面兩題:
          (1)如圖②,P是邊長為2的正方形ABCD邊CD上任意一點,且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。
          (2)如圖③,在△ABC中,∠A=90°,D是AB上一點,且BD=CD,過BC上任一點P做PE⊥AB于E,PF⊥DC于F,已知AD:BD=1:3,BC= 4,求PE+PF的值。

          查看答案和解析>>

          同步練習(xí)冊答案