日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,在等邊三角形ABC中,點(diǎn)EAB上,點(diǎn)DCB的延長線上,且EDEC

          1)(特殊情況,探索結(jié)論)

          如圖1,當(dāng)點(diǎn)EAB的中點(diǎn)時,確定線段AEDB的大小關(guān)系,請你直接寫出結(jié)論:

          AE   DB(填“>”、“<”或“=”).

          2)(特例啟發(fā),解答題目)

          如圖2,當(dāng)點(diǎn)EAB邊上任意一點(diǎn)時,確定線段AEDB的大小關(guān)系,請你直接寫出結(jié)論,AE   DB(填“>”、“<”或“=”);理由如下,過點(diǎn)EEFBC,交AC于點(diǎn)F.(請你將解答過程完整寫下來)

          3)(拓展結(jié)論,設(shè)計新題)

          在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在線段CB的延長線上,且EDEC,若△ABC的邊長為1,AE2,求CD的長.(請你畫出相應(yīng)圖形,并直接寫出結(jié)果)

          【答案】(1)=;(2)=;理由見解析;(3)3.

          【解析】

          1)由E為等邊三角形AB邊的中點(diǎn),利用三線合一得到CE垂直于AB,且CE為角平分線,由ED=EC,利用等邊對等角及等腰三角形的性質(zhì)得到一對角相等,利用等角對等邊即可得證;
          2AE=DB,理由如下,過點(diǎn)EEFBC,交AC于點(diǎn)F,由三角形ABC為等邊三角形,得到三角形AEF為等邊三角形,進(jìn)而得到AE=EF=AF,BE=FC,再由ED=EC,以及等式的性質(zhì)得到夾角相等,利用SAS得到三角形BDE與三角形EFC全等,利用全等三角形對應(yīng)邊相等得到DB=EF,等量代換即可得證;
          3)點(diǎn)EAB延長線上時,如圖所示,同理可得DBE≌△EFC,由BC+DB求出CD的長即可.

          1)當(dāng)EAB的中點(diǎn)時,AE=DB;


          2AE=DB,理由如下,過點(diǎn)EEFBC,交AC于點(diǎn)F,


          證明:∵△ABC為等邊三角形,
          ∴△AEF為等邊三角形,
          AE=EF,BE=CF
          ED=EC,
          ∴∠D=ECD,
          ∵∠DEB=60°-D,∠ECF=60°-ECD,
          ∴∠DEB=ECF,
          在△DBE和△EFC中,
          ,
          ∴△DBE≌△EFCSAS),
          DB=EF
          AE=DB;
          3)點(diǎn)EAB延長線上時,如圖所示,同理可得△DBE≌△EFC,
          DB=EF=2BC=1,
          CD=BC+DB=3
          故答案為:(1=;(2=33

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線ABy軸于A0a),交x軸于Bb,0),且a,b滿足(ab2+|3a+5b88|0

          1)求點(diǎn)AB的坐標(biāo);

          2)如圖1,已知點(diǎn)D2,5),求點(diǎn)D關(guān)于直線AB對稱的點(diǎn)C的坐標(biāo).

          3)如圖2,若P是∠OBA的角平分線上的一點(diǎn),∠APO67.5°,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把兩個直角三角形如圖放置,使重合,相交于點(diǎn),其中,,

          中線段的長________________

          如圖,把繞著點(diǎn)逆時針旋轉(zhuǎn)相交于點(diǎn),若恰好是以為底邊的等腰三角形,求線段的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,在邊長為的小正方形組成的網(wǎng)格中,的頂點(diǎn)、均在格點(diǎn)上,點(diǎn)軸上,點(diǎn)的坐標(biāo)為

          點(diǎn)關(guān)于點(diǎn)中心對稱的點(diǎn)的坐標(biāo)為________;

          繞點(diǎn)順時針旋轉(zhuǎn)后得到,那么點(diǎn)的坐標(biāo)為________;線段在旋轉(zhuǎn)過程中所掃過的面積是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,BC20 cmP,Q,M,N分別從A,B,C,D出發(fā),沿AD,BC,CBDA方向在矩形的邊上同時運(yùn)動,當(dāng)有一個點(diǎn)先到達(dá)所在運(yùn)動邊的另一個端點(diǎn)時,運(yùn)動即停止.已知在相同時間內(nèi),若BQx cm(x≠0),則AP2x cm,CM3x cm,DNx2 cm

          (1)當(dāng)x為何值時,點(diǎn)PN重合;

          (2)當(dāng)x為何值是,以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,羊年春節(jié)到了,小明親手制作了張一樣的卡片,在每張卡片上分別寫上“新”“年”“好”三個字,并隨機(jī)放入一個不透明的信封中,然后讓小芳分三次從信封中摸張卡片(每次摸張,摸出不放回).

          小芳第一次抽取的卡片是“新”字的概率是多少?

          請通過畫樹狀圖或列表,求小芳先后抽取的張卡片分別是“新年好”的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店需要購進(jìn)甲、乙兩種商品共160件,其進(jìn)價和售價如下表:(注:獲利=售價-進(jìn)價)

          (1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?

          (2)若商店計劃投入資金少于4290元,且銷售完這批商品后獲利多于1260元,請問共有幾種購貨方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是二次函數(shù) y=ax2+bx+ca0)的圖象的一部分,給出下列命題:a+b+c=0;②b2a;③ax2+bx+c=0的兩根分別為﹣31;④a﹣2b+c0.其中正確的命題是  

          A. B. ② ③ C. ③ ④ D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

          (1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?

          (2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過8780元購進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價為50元,乙種羽毛球每筒的進(jìn)價為40元.

          ①若設(shè)購進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

          ②若所購進(jìn)羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時所獲利潤最大?最大利潤是多少?

          查看答案和解析>>

          同步練習(xí)冊答案