日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知在⊙0中,半徑等于13,兩條平行弦AB、CD的長度分別為24和10,則AB與CD的距離為________.

          7或17
          分析:分兩種情況考慮:(i)當(dāng)兩條弦在圓心O同側(cè)時(shí),如圖1所示,過O作OE⊥CD,與AB交于F點(diǎn),由AB∥CD,可得出OF⊥AB,連接OA,OC,利用垂徑定理得到E、F分別為CD、AB的中點(diǎn),由CD與AB的長求出CE與AF的長,再由半徑OA與OC的長,利用勾股定理分別求出OE與OF,由OE-OF即可求出兩弦間的距離EF的長;(ii)當(dāng)兩條弦在圓心O異側(cè)時(shí),如圖1所示,過O作OE⊥CD,與AB交于F點(diǎn),由AB∥CD,可得出OF⊥AB,連接OA,OC,利用垂徑定理得到E、F分別為CD、AB的中點(diǎn),由CD與AB的長求出CE與AF的長,再由半徑OA與OC的長,利用勾股定理分別求出OE與OF,由OE+OF即可求出兩弦間的距離EF的長,綜上,得到AB與CD的距離.
          解答:解:分兩種情況考慮:
          (i)當(dāng)弦AB與弦CD在圓心O同側(cè)時(shí),如圖1所示,
          過O作OE⊥CD,與AB交于F點(diǎn),由AB∥CD,可得出OF⊥AB,
          連接OA,OC,
          ∵OE⊥CD,OF⊥AB,
          ∴E、F分別為CD、AB的中點(diǎn),
          ∵AB=24,CD=10,
          ∴CE=DE=5,AF=BF=12,
          又半徑OA=OC=13,
          ∴在Rt△AOF中,根據(jù)勾股定理得:OF==5,
          在Rt△COE中,根據(jù)勾股定理得:OE==12,
          則兩弦間的距離EF=OE-OF=12-5=7;
          (ii)當(dāng)弦AB與弦CD在圓心O異側(cè)時(shí),如圖2所示,
          過O作OE⊥CD,與AB交于F點(diǎn),由AB∥CD,可得出OF⊥AB,
          連接OA,OC,
          ∵OE⊥CD,OF⊥AB,
          ∴E、F分別為CD、AB的中點(diǎn),
          ∵AB=24,CD=10,
          ∴CE=DE=5,AF=BF=12,
          又半徑OA=OC=13,
          ∴在Rt△AOF中,根據(jù)勾股定理得:OF==5,
          在Rt△COE中,根據(jù)勾股定理得:OE==12,
          則兩弦間的距離EF=OE+OF=12+5=17,
          綜上,兩條弦間的距離為7或17.
          故答案為:7或17
          點(diǎn)評:此題考查了垂徑定理,以及勾股定理,利用了分類討論的思想,分類討論時(shí)要做到不重不漏.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          20、選做題(請從A.B兩題中選做一題即可)
          A題:在平面內(nèi)確定四個(gè)點(diǎn),連接每兩點(diǎn),使任意三點(diǎn)構(gòu)成等腰三角形(包括等邊三角形),且每兩點(diǎn)之間的線段長只有兩個(gè)數(shù)值.舉例如下:圖中相等的線段AB=BC=CD=DA,AC=BE.
          請你畫出滿足題目條件的三個(gè)圖形,并指出每個(gè)圖形中相等的線段.
          B題:如圖,已知扇形OAB的圓心角為90°,點(diǎn)C和點(diǎn)D是AB的三等分點(diǎn),半徑OC、OD分別和弦AB交于E、F.請找出圖中除扇形半徑以外的所有相等的線段,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,邊長為2
          3
          的等邊三角形ABC內(nèi)接于⊙O,點(diǎn)D在
          AC
          上運(yùn)動,但與A、C兩點(diǎn)不精英家教網(wǎng)重合,連接AD并延長交BC的延長結(jié)于P.
          (1)求⊙O的半徑;
          (2)設(shè)AD為x,AP為y,寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
          (3)D點(diǎn)在運(yùn)動過程中是否存在這樣的位置,使得△BDP成為以DB、DP為腰的等腰三角形?若存在,請你求出此時(shí)AD的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在△ABC中,AB=AC,∠B=30°,BC=6,點(diǎn)D在邊BC上,點(diǎn)E在線段DC上,DE精英家教網(wǎng)=3,△DEF是等邊三角形,邊DF、EF與邊BA、CA分別相交于點(diǎn)M、N.
          (1)求證:△BDM∽△CEN;
          (2)當(dāng)點(diǎn)M、N分別在邊BA、CA上時(shí),設(shè)BD=x,△ABC與△DEF重疊部分的面積為y,求y關(guān)于x的函數(shù)解析式,并直接寫出定義域;
          (3)是否存在點(diǎn)D,使以M為圓心,BM為半徑的圓與直線EF相切,如果存在,請求出x的值;如不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在等邊△ABC中,已知AB=8cm,線段AM為BC邊上的中線.點(diǎn)N在線段AM上,且MN=3cm,動點(diǎn)D在直線AM上運(yùn)動,連接CD,△CBE是由△CAD旋轉(zhuǎn)得到的.以點(diǎn)C圓心,以CN為半徑作⊙C與直線BE相交于點(diǎn)P、Q兩點(diǎn).

          (1)填空:∠DCE=
          60
          60
          度,CN=
          5
          5
          cm,AM=
          4
          3
          4
          3
          cm.
          (2)如圖1當(dāng)點(diǎn)D在線段AM上運(yùn)動時(shí),求出PQ的長.
          (3)當(dāng)點(diǎn)D在MA的延長線上時(shí),請?jiān)趫D2中畫出示意圖,并直接寫出PQ=
          6
          6
          cm.
          當(dāng)點(diǎn)D在AM的延長線上時(shí),請?jiān)趫D3中畫出示意圖,并直接寫出PQ=
          6
          6
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知等邊△ABC邊長為a,D、E分別為AB、AC邊上的動點(diǎn),且在運(yùn)動時(shí)保持DE∥BC,如圖(1),⊙O1與⊙O2都不在△ABC的外部,且⊙O1、⊙O2分別與∠B和∠C的兩邊及DE都相切,其中和DE、BC的切點(diǎn)分別為M、N、M′、N′.
          (1)求證:⊙O1和⊙O2是等圓;
          (2)設(shè)⊙O1的半徑長為x,圓心距O1O2為y,求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
          (3)當(dāng)⊙O1與⊙O2外切時(shí),求x的值;
          (4)如圖(2),當(dāng)D、E分別是AB、AC邊的中點(diǎn)時(shí),將⊙O2先向左平移至和⊙O1重合,然后將重合后的圓沿著△ABC內(nèi)各邊按圖(2)中箭頭的方向進(jìn)行滾動,且總是與△ABC的邊相切,當(dāng)點(diǎn)O1第一次回到它原來的位置時(shí),求點(diǎn)O1經(jīng)過的路線長度?
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊答案