日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
          求證:(1)△BAD≌△CAE;(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

          【答案】分析:要證(1)△BAD≌△CAE,現(xiàn)有AB=AC,AD=AE,需它們的夾角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易證得.(2)BD、CE有何特殊位置關(guān)系,從圖形上可看出是垂直關(guān)系,可向這方面努力.要證BD⊥CE,需證∠BDE=90°,需證∠ADB+∠ADE=90°可由直角三角形提供.
          解答:(1)證明:∵∠BAC=∠DAE=90°
          ∴∠BAC+∠CAD=∠DAE+CAD
          即∠BAD=∠CAE,
          又∵AB=AC,AD=AE,
          ∴△BAD≌△CAE(SAS).

          (2)BD、CE特殊位置關(guān)系為BD⊥CE.
          證明如下:由(1)知△BAD≌△CAE,
          ∴∠ADB=∠E.
          ∵∠DAE=90°,
          ∴∠E+∠ADE=90°.
          ∴∠ADB+∠ADE=90°.
          即∠BDE=90°.
          ∴BD、CE特殊位置關(guān)系為BD⊥CE.
          點評:本題考查了全等三角形的判定和性質(zhì);全等問題要注意找條件,有些條件需在圖形是仔細(xì)觀察,認(rèn)真推敲方可.做題時,有時需要先猜后證.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
          求證:∠B=∠C.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
          (1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
          (2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
          (1)作出邊AC的垂直平分線DE;
          (2)當(dāng)AE=BC時,求∠A的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
          求證:∠B=∠C.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:專項題 題型:證明題

          已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
                     ∠1=∠2;
          求證:∠B=∠C

          查看答案和解析>>

          同步練習(xí)冊答案