日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線ABx軸于點B2,0),交y軸于點A0,2),直線DMx軸正半軸于點M,交線段AB于點C,DM=3,連接DADAC=90°

          1)求直線AB的解析式.

          2)求D點坐標及過O、D、B三點的拋物線解析式.

          3)若點P是線段OB上的動點,過點Px軸的垂線交ABF,交(2)中拋物線于E,連CE,是否存在P使BPFFCE相似?若存在,請求出P點坐標;若不存在說明理由.

          【答案】1)直線AB的解析式為y=x+2;(2D點坐標是(1,3),拋物線的解析式為y=3xx2);(3P,0);(,0)或(,0).

          【解析】試題分析:1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
          2)根據(jù)等腰直角三角形的判定與性質,可得D點坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;
          3)根據(jù)相似三角形的判定與性質,可得E點坐標,根據(jù)點的坐標滿足函數(shù)解析式,可得E點坐標,可得P點坐標.

          試題解析:(1)設直線AB的解析式為y=kx+b,將A.B點坐標代入函數(shù)解析式,得

          解得

          直線AB的解析式為y=x+2

          (2)如圖1,

          DDGy軸,垂足為GOA=OB=2,

          ∴△OAB是等腰直角三角形。

          ADAB,

          即△ADG是等腰直角三角形,

          DG=AG=OGOA=DMOA=32=1,

          D點坐標是(1,3);

          設拋物線的解析式為y=ax(x2),將D點坐標代入,得

          a×1×(12)=3,解得a=3,拋物線的解析式為y=3x(x2)

          (3)(2) P(x,0),MP=x1PB=2x,

          ①當,BPF∽△FCE,

          CCHEF, EF=2CH=MP,

          PE=PF+EF=BP+2MP=2x+2(x1)=x,E(x,x).

          E點坐標代入拋物線,得

          x=3x(x2),

          解得不符合題意, ,

          ②如圖2

          時,△CEF、BPF為等腰直角三角形,PE=MC=1

          E(x,1),

          E點坐標代入函數(shù)解析式,得

          3x(x2)=1

          解得

          此時

          綜上所述:

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】通過學習絕對值,我們知道的幾何意義是數(shù)軸上表示數(shù)在數(shù)軸上的對應點與原點的距離,如:表示在數(shù)軸上的對應點到原點的距離.,表示在數(shù)軸上對應的兩點之間的距離,類似的,,即表示、在數(shù)軸上對應的兩點之間的距離;一般地,點,在數(shù)軸上分別表示數(shù)、,那么,之間的距離可表示為.

          請根據(jù)絕對值的幾何意義并結合數(shù)軸解答下列問題:

          1)數(shù)軸上表示的兩點之間的距離是___;數(shù)軸上、兩點的距離為,點表示的數(shù)是,則點表示的數(shù)是___.

          2)點,在數(shù)軸上分別表示數(shù)、、,那么到點.的距離之和可表示為_ (用含絕對值的式子表示);若到點.的距離之和有最小值,則的取值范圍是_ __.

          3的最小值為_ __.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,把一個直角三角形ACB(ACB=90°)繞著頂點B順時針旋轉60°,使得點C旋轉到AB邊上的一點D,點A旋轉到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

          (1)求證:CF=DG;

          (2)求出FHG的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線軸交于A、B兩點,與y軸交于點C(0,3),且此拋物線的頂點坐標為M(-1,4).

          (1)求此拋物線的解析式;

          (2)設點D為已知拋物線對稱軸上的任意一點,當ACD面積等于6時,求點D的坐標;

          (3)點P在線段AM上,當PCy軸垂直時,過點P軸的垂線,垂足為E,將PCE沿直線CB翻折,使點P的對應點P'P、E、C處在同一平面內,請求出P'坐標,并判斷點P'是否在拋物線上.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線軸交于點C,與軸交于點B,與反比例函數(shù)的圖象在第一象限交于點A,連接OA,且

          (1)求ΔBOC的面積.

          (2)求點A的坐標和反比例函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:

          1)(+10+(﹣4

          2)(+++

          35.6+(﹣0.9+4.4+(﹣8.1

          4)(﹣81÷×÷(﹣16

          5)(﹣5×49

          6)(﹣125×[2﹣(﹣2]300÷6

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知點AC分別在∠GBE的邊BGBE上,且AB=ACAD∥BE,∠GBE的平分線與AD交于點D,連接CD

          求證:①AB=AD;

          ②CD平分∠ACE

          【答案】詳見解析.

          【解析】(1)∵ADBE

          ∴∠ADB=∠DBC

          BD平分∠ABC

          ∴∠ABD=∠DBC

          ∴∠ABD=∠ADB,

          AB=AD

          2ADBE,

          ∴∠ADC=∠DCE

          由①知AB=AD

          又∵AB=AC,

          AC=AD,

          ∴∠ACD=∠ADC,

          ∴∠ACD=∠DCE,

          CD平分∠ACE

          點睛:角平分線問題的輔助線添加及其解題模型.

          ①垂兩邊:如圖(1),已知平分,過點, ,則.

          ②截兩邊:如圖(2),已知平分,點 上,在上截取,則.

          ③角平分線+平行線→等腰三角形:

          如圖(3),已知平分 ,則;

          如圖(4),已知平分, ,則.

          (1) (2) (3) (4)

          ④三線合一(利用角平分線+垂線→等腰三角形):

          如圖(5),已知平分,且,則 .

          (5)

          型】解答
          束】
          26

          【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.

          (1)求證:AC平分∠DAB;

          (2)若AB=4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;

          (3)如圖②,連接OD交AC于點G,若,求sinE的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,若順次連接四邊形ABCD各邊中點得的四邊形EFGH是矩形,則稱原四邊形ABCD為“中母矩形”即若四邊形的對角線互相垂直,那么這個四邊形稱為“中母矩形”.

          1)如圖2,在直角坐標系xOy中,已知A4,0),B1,4),C4,6),請在格點上標出D點的位置(只標一點即可),使四邊形ABCD是中母矩形.并寫出點D的坐標.

          2)如圖3,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDEACFG,連接CE,BG相交于點O,試判斷四邊形BEGC是中母矩形?說明理由.

          3)如圖4,在RtABC中,AB8,BC6,E是斜邊AC的中點,F是直角邊AB的中點,P是直角邊BC上一動點,試探究:當PC_____時,四邊形BPEF是中母矩形?(直角三角形中,30°角所對的直角邊是斜邊的一半)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】O為數(shù)軸的原點,點A、B在數(shù)軸上的位置如圖所示,點A表示的數(shù)為5,線段AB的長為線段OA長的1.2.C在數(shù)軸上,M為線段OC的中點

          1)點B表示的數(shù)為____________

          2)若線段BM的長為4.5,則線段AC的長為___________

          3)若線段AC的長為x,求線段BM的長(用含x的式子表示)

          查看答案和解析>>

          同步練習冊答案