【題目】某旅行社推出一條成本價(jià)位500元/人的省內(nèi)旅游線路,游客人數(shù)y(人/月)與旅游報(bào)價(jià)x(元/人)之間的關(guān)系為y=﹣x+1300,已知:旅游主管部門規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價(jià)的取值范圍;
(2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;
(3)檔這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)取值范圍為1100元/人~1200元/人之間;(2)50000;(3)x=900時(shí),w最大=160000
【解析】試題分析:(1)根據(jù)題意列不等式求解可;
(2)根據(jù)報(bào)價(jià)減去成本可得到函數(shù)的解析式,根據(jù)一次函數(shù)的圖像求解即可;
(3)根據(jù)利潤(rùn)等于人次乘以價(jià)格即可得到函數(shù)的解析式,然后根據(jù)二次函數(shù)的最值求解即可.
試題解析:(1)∵由題意得
時(shí),即
,
∴解得
即要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),該旅游線路報(bào)價(jià)的取值范圍為1100元/人~1200元/人之間;
(2)
,
,∴
∵
,∴當(dāng)
時(shí),z最低,即
;
(3)利潤(rùn)
當(dāng)
時(shí),
.
【題型】解答題
【結(jié)束】
23
【題目】已知四邊形ABCD中,AB=AD,對(duì)角線AC平分∠DAB,過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)F為AB上一點(diǎn),且EF=EB,連接DF.
(1)求證:CD=CF;
(2)連接DF,交AC于點(diǎn)G,求證:△DGC∽△ADC;
(3)若點(diǎn)H為線段DG上一點(diǎn),連接AH,若∠ADC=2∠HAG,AD=3,DC=2,求
的值.
