日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖①,在中,,,,點出發(fā)沿方向向點勻速運動,速度為1cm/s;點出發(fā)沿方向向點
          速運動,速度為2cm/s;連接.若設運動的時間為),解答下列問題:
          (1)當為何值時,?
          (2)設的面積為),求之間的函數(shù)關系式;
          (3)是否存在某一時刻,使線段恰好把的周長和面積同時平分?若存在,求出此時的值;若不存在,說明理由;
          (4)如圖②,連接,并把沿翻折,得到四邊形,那么是否存在某一時刻,使四邊形為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

          (1);(2);(3)不存在;(4)

          解析試題分析:(1)當PQ∥BC時,可得出三角形APQ和三角形ABC相似,根據(jù)相似三角形的對應邊成比例即可求得結果;
          (2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時間t表示出來.關鍵是高,可以用AP和∠A的正弦值來求.AP的長可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出x,y的函數(shù)關系式.
          (3)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時t的值,我們可將t的值代入(2)的面積與t的關系式中,求出此時面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時刻.
          (4)我們可通過構建相似三角形來求解.過點P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個矩形,解題思路:通過三角形BPN和三角形ABC相似,得出關于BP,PN,AB,AC的比例關系,即可用t表示出PN的長,也就表示出了MC的長,要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點,QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長,就可以根據(jù)AC=AQ+QM+MC來求出t的值.求出了t就可以得出QM,CM和PM的長,也就能求出菱形的邊長了.
          (1)在Rt△ABC中,,
          由題意知:AP=5-t,AQ=2t,若PQ∥BC,則△APQ∽△ABC,


          解得,
          所以當時,PQ∥BC;
          (2)如圖,過點P作PH⊥AC于H,

          ∵△APH∽△ABC,


          ,

          (3)若PQ把△ABC周長平分,則AP+AQ=BP+BC+CQ,
          ∴(5-t)+2t=t+3+(4-2t),解得t=1,
          若PQ把△ABC面積平分,則,即,
          ∵t=1代入上面方程不成立,
          ∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.
          (4)過點P作PM⊥AC于M,PN⊥BC于N,

          若四邊形PQP'C是菱形,那么PQ=PC.
          ∵PM⊥AC于M,
          ∴QM=CM.
          ∵PN⊥BC于N,易知△PBN∽△ABC,

          ,
          解得,

          解得,
          時,四邊形PQP'C是菱形.
          此時,
          在Rt△PMC中,
          ∴菱形PQP′C邊長為
          考點:本題考查的是相似三角形的綜合應用
          點評:解答本題的關鍵是正確作出輔助線,找到相似的三角形,靈活運用相似三角形的對應邊成比例的性質。

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          25、已知:如圖1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直線AD,BC相交于點E.
          (1)求∠E的度數(shù);
          (2)如果點C,D在⊙O上運動,且保持弦CD的長度不變,那么,直線AD,BC相交所成銳角的大小是否改變?試就以下三種情況進行探究,并說明理由(圖形未畫完整,請你根據(jù)需要補全).
          ①如圖2,弦AB與弦CD交于點F;
          ②如圖3,弦AB與弦CD不相交;
          ③如圖4,點B與點C重合.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•歷下區(qū)一模)已知:如圖1,在DE上取一點A,以AD、AE為正方形的一邊在同一側作正方形ABCD和正方形AEFG,連接DG、BE,則線段DG、BE之間滿足DG=BE且DG⊥BE;

          根據(jù)所給圖形完成以下問題的探索、證明和計算:
          (1)如圖2,將正方形AEFG繞A點順時針旋轉α度,即∠BAG=α (0°<α<180°),那么(1)中的結論是否仍成立?若不成立請說明理由,若成立請給出證明.
          (2)設正方形ABCD、AEFG的邊長分別是3和2,線段BD、DE、EG、GB所圍成封閉圖形的面積為S.當α變化時,S是否有最大值?若有,求出S的最大值及相應的α值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (1)已知:如圖1,在△ABC中,∠ACB=90°,CD⊥AB于點D,點E在AC上,CE=BC,過E點作AC的垂線,交CD的延長線于點F.求證:AB=FC.
          (2)如圖2,已知△ABC的三個頂點的坐標分別為A(-2,3)、B(-6,0)、C(-1,0).
          (1)請直接寫出點A關于y軸對稱的點的坐標;
          (2)將△ABC繞坐標原點O逆時針旋轉90°.畫出圖形,直接寫出點B的對應點的坐標;
          (3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          我們知道三角形的一條中線能將這個三角形分成面積相等的兩個三角形,反之,若經過三角形的一個頂點引一條直線將這個三角形分成面積相等兩個三角形,那么這條直線平分三角形的這個頂點的對邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
          請你直接應用上述結論解決以下問題:

          (1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點C落在點E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
          1
          4
          ,問線段AE與線段BD有什么關系?在圖中按要求畫出圖形,并說明理由.
          (2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點D是AB邊的中點,點P是BC邊上的任意一點,連接PD,沿PD翻折△ADP,使點A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
          1
          4
          ,直接寫出BP2的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          )已知:如圖11,在中,邊上的高,平分線. ,

          ⑴求的度數(shù);

          ⑵求的度數(shù).

           


          查看答案和解析>>

          同步練習冊答案